Шрифт:
Интервал:
Закладка:
Рис. 3.6. Когда карта WMAP, представленная на рис. 3.5, раскладывается на сумму мультиполей, показывающих пятна все меньших размеров, то на первых двух мультиполях (слева и посередине) видно загадочную симметрию относительно некоего направления, названного “осью зла”. Различные цвета показывают, насколько теплее или холоднее среднего небо в данном направлении. Шкала размечена в микрокельвинах, миллионных долях градуса.
Дважды все перепроверив, мы с Анжеликой упомянули о неожиданном открытии в своей статье, посвященной карте. Я был поражен – такой поднялся шум. (Об этом рассказала газета «Нью-Йорк таймс», и редакция даже прислала к нам фотографа.) Мы стали изучать явление подробнее, как и другие группы (одна назвала выделенное направление «осью зла»). Кто-то доказывал, что это статистическая флуктуация или галактическое загрязнение. Другие утверждали, что это явление еще загадочнее, чем считали мы, находя с применением другого метода дополнительные аномалии даже для мультиполей 4 и 5. Некоторые экзотические объяснения, вроде того, что мы живем в небольшой «вселенной-баранке», где пространство замкнуто на себя, были впоследствии отброшены, но и по сей день я озадачен «осью зла» не меньше, чем в ту первую ночь.
Совершеннолетие микроволнового фона
В 2006 году нас с Анжеликой пригласили в Стокгольм, чтобы помочь отметить присуждение Нобелевской премии по физике за открытие COBE. Как часто бывает, в команде COBE были трения по вопросу о научном вкладе участников. Премию разделили Джордж Смут и Джон Мазер, и я с облегчением увидел их умиротворяющий подход к делу. Они смогли пригласить команду COBE приехать и погреться в лучах заслуженной славы. Чувствовалось, что нескончаемая череда вечеринок помогла преодолеть трещины в отношениях, подчеркивая очевидное – все участники не просто помогли двум коллегам получить премию, а совершили нечто гораздо более важное: «детские фотографии» Вселенной породили целое исследовательское направление и начали новую эру в космологии. (Как бы мне хотелось, чтобы Гамов, Альфер и Херман тоже были там!)
21 марта 2013 года я проснулся в пять утра в напряженном ожидании и сразу настроился на прямую интернет-трансляцию из Парижа, где команда спутника «Планк» показывала свои первые изображения микроволнового фона. За 10 лет ACBAR, ACT, Южный полярный телескоп[11] и т. д. углубили наши знания о микроволновом фоне, но это была крупнейшая веха со времен WMAP. Пока я брился, Джордж Эфстатиу рассказывал о результатах. Мне вспомнился март 1995 года, когда Джордж пригласил меня в Оксфорд поработать с ним над новым методом анализа данных «Планка». Это был первый раз, когда меня пригласили в исследовательскую коллаборацию, и я был очень за это благодарен. Мы разрабатывали новую технику очистки загрязненных изображений, которая должна была помочь в обосновании финансирования «Планка» Европейским космическим агентством. И вот результаты наконец станут известны постаревшему на 18 лет Максу!
Когда Джордж показал карту неба, полученную «Планком», я отложил бритву, чтобы вывести на дисплей и очищенную карту WMAP. «Они так похожи! – подумалось мне. – И „ось зла“ на месте!» Я поместил обе карты на рис. 3.5, чтобы вы могли их сравнить. Как видите, крупные детали изумительно совпадают, но на карте «Планка» гораздо больше крошечных пятнышек. Значительное увеличение чувствительности и разрешения позволило разобрать детали, слившиеся на карте WMAP. Карта «Планка» определенно оправдывала ожидания! Я спроецировал ее на сферу. Благодаря превосходному качеству «Планк» фактически предоставил контрольные данные для оценки работы WMAP, и после обработки мне стало ясно, что команда WMAP заслужила «пять с плюсом» (как и команда самого «Планка»). Однако я думаю, что главный сюрприз, который преподнес «Планк», состоит в том, что не обнаружилось никаких сюрпризов: в основном он подтвердил космологическую картину, которая у нас уже была, но с гораздо большей точностью. Исследования космического микроволнового фона вступили в пору зрелости.
Итак, мы отодвинули пределы наших знаний на 14 млрд лет – до 400 тыс. лет после Большого взрыва – и увидели, что все появилось из заполнявшей космос горячей плазмы. В те времена не было ни людей, ни планет, ни даже звезд с галактиками – только атомы, сталкивающиеся друг с другом и излучающие свет. До разгадки происхождения этих атомов мы еще не добрались.
Как появились атомы?
Космический «термоядерный реактор»
Смелая экстраполяция Гамова предсказала космический микроволновый фон, а теперь у нас были и восхитительные «детские фото» Вселенной. Но, словно этого было недостаточно, Гамов продолжил свою экстраполяцию еще дальше в прошлое и вывел из нее другие следствия. Чем дальше в прошлое – тем горячее. Около 400 тыс. лет после Большого взрыва заполнявший пространство водород оказался разогрет до нескольких тысяч градусов. Это всего вдвое меньше, чем на поверхности нашего Солнца, и поэтому он вел себя так же, как водород на Солнце – светился, порождая космический фон микроволнового излучения. Гамов предположил, что через минуту после Большого взрыва температура водорода составляла около 1 млрд градусов. Это горячее, чем в ядре Солнца, а значит, водород должен был делать то же самое, что и водород в солнечном ядре – участвовать в термоядерных реакциях, превращаясь в гелий. Однако расширение и охлаждение Вселенной вскоре выключило космический «термоядерный реактор», охладив его до температуры, при которой он не смог работать, так что у него не было времени, чтобы весь водород превратить в гелий. С подачи Гамова его ученики Альфер и Херман выполнили детальные расчеты этих реакций, однако, поскольку работали они еще в конце 40-х годов, им сильно недоставало современных компьютеров.
Но как проверить это предсказание, если первые 400 тыс. лет жизни Вселенная была непрозрачной и все, что случилось тогда, скрыто от нашего зрения вуалью космического плазменного экрана, порождающего микроволновый фон? Гамов увидел здесь сходство с теорией существования динозавров: их нельзя увидеть непосредственно, но можно посмотреть на окаменелости. Поверяя вычисления группы Гамова с использованием современных данных и компьютеров, можно вывести: когда Вселенная была термоядерным реактором, она успела переработать в гелий 25 % своей массы. Когда вы измеряете долю гелия в далеком межгалактическом газе, изучая с помощью телескопа его спектр, вы обнаруживаете, что его там… эти самые 25 %! Меня эта находка впечатляет столь же сильно, как открытие бедра тираннозавра. Это прямое свидетельство того, что в прошлом происходили безумные вещи: в данном случае все было безумно горячим. Причем гелий – это не единственная «окаменелость». Первичный нуклеосинтез, как стали называть теорию Гамова, также предсказывал, что каждый из примерно 300 тыс. атомов должен быть дейтерием, а каждый пятимиллионный атом – литием. Сейчас оба соотношения измерены и полностью согласуются с теоретическими предсказаниями.
Большой взрыв под вопросом
Впрочем, успех дался нелегко. Теорию Большого взрыва встретили прохладно. Даже название «Большой взрыв» придумал один из оппонентов Гамова, Фред Хойл[12]. В 1950 году за теорией Гамова числилось два важных предсказания, причем оба неверных: о возрасте Вселенной и о распространенности элементов. Первоначальные хаббловские измерения космологического расширения предсказывали, что нашей Вселенной не более 2 млрд лет, и геологов не устраивало, что Вселенная моложе их горных пород. Кроме того, Гамов, Альфер и Херман надеялись, что первичный нуклеосинтез породит практически все наблюдаемые вокруг нас атомы в правильных пропорциях, но ему не удалось произвести даже близкое к нужному количество углерода, кислорода и других обычных для нас элементов – получились только гелий, дейтерий и ничтожное количество лития.
Теперь мы знаем, что Хаббл сильно ошибся в оценке расстояния от нас до галактик. Из-за этого он заключил, что Вселенная расширяется в 7 раз быстрее, чем на самом деле, и, следовательно, она в 7 раз моложе, чем в действительности. В 50-х годах, благодаря улучшенным измерениям, эта ошибка стала исправляться. Недовольные геологи получили подтверждение своей правоты и поостыли.
Второй «провал» теории Большого взрыва также исправили примерно в это время. Гамов провел новаторские исследования термоядерных реакций в звездах. Согласно этой работе, а также исследованиям других ученых, звезды производят почти только гелий – как сейчас Солнце. (Гамов надеялся, что первичный нуклеосинтез может объяснить, откуда взялись все остальные элементы.) Однако в 50-х годах физики-ядерщики открыли, как казалось, случайное совпадение между уровнями ядерной энергии гелия, бериллия, углерода и кислорода, благодаря которому усиливались термоядерные реакции. Фред Хойл первым понял, что это совпадение позволяет звездам на поздних стадиях жизни превращать гелий в углерод, кислород и большинство других элементов, из которых состоим мы. Более того, стало ясно, что звезды завершают жизнь, взрываясь и возвращая многие из порожденных атомов обратно в газовые облака, которые порождают новые звезды, планеты и, в конце концов, нас. Иными словами, мы связаны с небесами теснее, чем думали наши предки: мы созданы из звездной пыли. Мы живем во Вселенной, а Вселенная живет в нас. Эта догадка превратила гамовскую теорию первичного нуклеосинтеза из провала в потрясающий успех: в первые минуты Вселенная создала гелий с добавками дейтерия и лития, а звезды породили все остальные атомы[13]. Загадка происхождения атомов была разрешена. И тут – везет так везет, – едва отношение к теории горячей Вселенной наконец стало теплеть, как мир космологии взбудоражило подтверждение в 1964 году другого гамовского предсказания – послесвечения Большого взрыва в форме космического микроволнового излучения.
- Квантовый кот вселенной - Эрвин Шредингер - Прочая научная литература
- Сто пятьдесят три - Игорь Юсупов - Прочая научная литература / Прочая религиозная литература / Справочники
- Голографическая Вселенная - Майкл Талбот - Прочая научная литература