Читать интересную книгу Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 104

Примерно в то же время был найден и несколько иной механизм транспортировки вещества в район внутренних планет. Он оказался связан с вековыми резонансами.

Вековые резонансы возникают при совпадении или почти совпадении средних движений перигелиев и/или узлов орбиты малого тела и орбиты возмущающего тела. Вековые резонансы приводят к сильным возмущениям эксцентриситета и/или наклона орбиты малого тела с очень долгими периодами, которые могут достигать десятков и сотен тысяч лет. Результат влияния вековых резонансов на элементы орбит астероидов можно наблюдать при сопоставлении элементов орбит большого числа тел. Вековые резонансы ограничивают область фазового пространства, в котором располагаются элементы орбит малых планет, а в ряде случаев рассекают ее на части. Вековые резонансы также причастны к переносу вещества из пояса астероидов в область внутренних планет [Knezevic and Milani, 1994]. В частности, у внутреннего края Главного пояса астероидов в окрестности значений большой полуоси a = 2,1 а.е. доминирует вековой резонанс ν6 (совпадение средних движений перигелиев орбит астероида и Сатурна; к нему имеют отношение также вековые осцилляции эксцентриситета орбиты Юпитера). Его расположение в поясе слабо зависит от эксцентриситета, но сильно зависит от наклона орбит: при наклонах, меньших 10°, он проходит в окрестности 2,1 а.е. При бо́льших значениях наклона область его действия смещается в сторону увеличения больших полуосей (рис. 3.11).

Вблизи этого резонанса эксцентриситеты орбит астероидов испытывают регулярные вековые колебания, вследствие чего астероиды приобретают возможность сближаться с внутренними планетами и выпадать на Солнце. Среднее время, необходимое для изменения орбиты астероида с квазикруговой на орбиту, пересекающую орбиту Земли, составляет всего около 0,5 млн лет. Последующее развитие событий также протекает весьма быстро. Средняя продолжительность жизни тел, стартовавших из резонанса ν6, составляет всего около 2 млн лет. В 80 % случаев развитие событий заканчивается выпадением астероида на Солнце, в 12 % случаев — выбросом астероида на гиперболическую орбиту в результате сближения с планетами, в особенности с Юпитером, и только примерно в 1 % случаев — столкновением с Землей.

Рис. 3.11. Распределение занумерованных астероидов в плоскости a, i. Четко выделяются люки вблизи значений большой полуоси 2,52 а.е. (897″), 2,82 а.е. (748″), 3,3 а.е. (598″). Тонкой сплошной линией показано расположение векового резонанса ν6, отделяющего планеты с большими наклонами (i > 20°) от остальной части пояса. Хорошо заметна группа Венгрии (большие наклоны, значения большой полуоси, близкие к 1,93 а.е.). Заметны также концентрации тел, соответствующих семействам астероидов Эвномии (a ≈ 2,53–2,72 a.e., i ≈ 11,1–15,8°), Эос (a ≈ 2,99–3,03 a.e., i ≈ 8–12°), Корониды (a ≈ 2,83–2,91 a.e., i ≈ 0,8–3,5°) и др.

На периферии области действия этого резонанса его эффект становится менее мощным, но все еще достаточным, чтобы позволить астероиду сближаться с Марсом в периоды наибольшего возрастания эксцентриситета [Morbidelli et al., 2002]. Дальнейшая эволюция к состоянию АСЗ протекает уже под влиянием сближений с Марсом, и темп ее существенно замедляется. Приведенные выше вероятностные оценки различных путей эволюции и продолжительности ее этапов получены с помощью метода симплектического интегрирования уравнений движения большого числа виртуальных астероидов с разнообразными начальными условиями.

Вековой резонанс ν6 является наиболее активным поставщиком астероидного материала в зону внутренних планет. Следующим по эффективности является резонанс средних движений 3:1 (a = 2,52 а.е., n = 897″). Но, так же как и в случае резонанса ν6, подавляющая часть астероидов выпадает не на поверхность планет земной группы, а в конечном счете на Солнце (70 %) или выбрасывается на гиперболические орбиты (28 %). Средняя продолжительность жизни тел, стартовавших из этого резонанса, несколько превышает 2 млн лет. Вероятность падения астероида на Землю составляет всего 2 10-3 [Morbidelli and Gladman, 1998].

В случае резонанса 5:2 (a = 2,82 а.е.) «накачка» эксцентриситета происходит очень быстро, и астероидный материал уже за время порядка 300 000 лет достигает района орбиты Земли. Но, с другой стороны, в афелии орбита тела приближается к орбите Юпитера или даже оказывается в ее пределах. В силу этого до 92 % астероидов выбрасывается на гиперболические орбиты, 8 % попадает на Солнце и только около 0,03 % в конце концов оказывается на Земле.

Хотя резонанс 2:1 (a = 3,28 а.е.) способен доставлять некоторое количество материала в район орбиты Земли, средняя продолжительность существования тел на таких орбитах исчисляется всего сотней тысяч лет, поскольку Юпитер быстро преобразует их орбиты в гиперболические.

Помимо перечисленных наиболее мощных резонансов в поясе астероидов присутствует множество других резонансов, оказывающих менее существенное, но тем не менее заметное влияние на движение тел. Эти резонансы обусловлены соизмеримостями средних движений тел с Юпитером более высоких порядков (например, соизмеримостями 7:2, 7:3, 9:4, 10:3), соизмеримостями средних движений с Марсом, Землей, кратными соизмеримостями, когда резонансные соотношения связывают средние движения трех тел (например, Юпитера, Сатурна и астероида [Nesvorny and Morbidelli, 1998]), а также разного рода вековыми резонансами. В результате этого большая часть орбит астероидов Главного пояса обнаруживает слабую хаотичность. Правда, эффект этой хаотичности невелик. Большие полуоси орбит колеблются в узкой окрестности резонансов, а эксцентриситеты и наклоны хаотически диффундируют в сторону увеличения. Эти процессы также способствуют транспортировке вещества из внутренней части пояса (a < 2,5 а.е.) в район планет земной группы, а во внешней части пояса способствуют сближению тел с Юпитером, и, в конечном счете, выбросу их из Солнечной системы. Но время этой транспортировки крайне велико — от десятков миллионов до миллиардов лет. Тем не менее, именно эти слабые резонансы в основном ответственны за постоянное пополнение популяции астероидов, пересекающих орбиту Марса — «марс-кроссеров» (MC, Mars Crossers Asteroids) (1,3 < q < 1,67 а.е.), которая примерно в четыре раза более многочисленна, чем популяция АСЗ. Эта популяция не может поддерживаться за счет сильных резонансов, так как возрастание эксцентриситета в них происходит слишком быстро и при сближениях с Марсом в популяцию марс-кроссеров захватывается незначительное число астероидов. В области a 6 2,06 а.е. отсутствуют сильные резонансы, способные превратить орбиты, пересекающие орбиту Марса, в орбиты, пересекающие орбиты Земли и Венеры. Поэтому астероиды, попавшие в эту область под действием диффузных резонансов, надолго застревают в ней. Только случайные сближения с Марсом способны вернуть их в область сильных резонансов, где они могут быть преобразованы в АСЗ.

Хотя источники пополнения популяции АСЗ рассмотрены выше достаточно полно, остаются вопросы о том, каков вклад каждого источника в реально наблюдаемую популяцию и насколько сильно характеристики этой популяции искажены наблюдательной селекцией. Эффективным способом ответа на эти вопросы является построение динамической модели устойчивого состояния популяции [Bottke et al., 2002b]. В этой работе численным путем была прослежена эволюция многочисленных виртуальных астероидов, берущих начало в разных источниках: резонансах 3:1 и ν6, диффузных резонансах и в кометах семейства Юпитера. В ходе вычислений регистрировалось время, проведенное каждым астероидом в различных ячейках трехмерной сетки a, e, i за период существования частицы до того или иного финала. Если популяция находится в динамически устойчивом состоянии, то суммарное время, проведенное различными астероидами в отдельных ячейках трехмерного пространства, пропорционально орбитальному распределению тел. Общее распределение АСЗ было найдено как линейная комбинация взвешенного вклада каждого источника.

Из построенной модели следует, что 37 ± 8 % всех АСЗ с абсолютными звездными величинами в пределах 13m < H < 22m приходят из резонанса ν6, 23 ± 9 % — из резонанса 3:1, 33 ± 3 % — из многочисленных диффузных резонансов и 6 ± 4 % происходят из комет семейства Юпитера (кометы из облака Оорта не учитывались).

Таким образом, в настоящее время в основном известны механизмы транспортировки астероидного вещества из разных областей, прежде всего из резонансных зон ν6 и 3:1. Естественно возникает вопрос, каким образом происходит пополнение вещества в резонансных зонах пояса: без пополнения они давно были бы близки к полному истощению. Между тем, исследование распределения кратеров на поверхности Луны и Земли свидетельствует об относительном постоянстве темпа бомбардировки этих тел астероидами, кометами и их обломками в течение последних трех миллиардов лет [Grieve and Shoemaker, 1994; Иванов, 2005]. Потенциальные источники должны обеспечивать более или менее равномерный приток вещества в резонансные зоны, притом в нужном количестве.

1 ... 11 12 13 14 15 16 17 18 19 ... 104
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Астероидно-кометная опасность: вчера, сегодня, завтра - Борис Шустов.

Оставить комментарий