Шрифт:
Интервал:
Закладка:
Транзисторы (VT). Известно, что полупроводниковый диод намного старше транзистора и для последнего является настоящим дедушкой. Ведь в результате работ по исследованию и совершенствованию полупроводникового диода и появился на свет в 1948 г. новый с чудесными свойствами электронный прибор — транзистор. Эту успешную и знаменательную работу провели американские ученые: Дж. Бардин, У. Шокли, У. Браттейн, за что в 1956 г. получили Нобелевскую премию.
Диод — своего рода составная часть транзистора, который можно рассматривать как 2 диода, соединенных определенным образом в одно целое в едином кристалле (учтите, из соединения 2 обычных диодов транзистор не получится).
Миниатюрность, высокая надежность, сказочная экономичность, долговечность — основные достоинства транзистора.
Итак, транзистор — это электронный усилительный полупроводниковый прибор, основной деталью которого является крошечный с определенной структурой кристалл германия или кремния.
Основное назначение транзистора — усиление, генерирование и преобразование электрических колебаний.
Термин «транзистор» образован из двух английских слов: «трансфер» — преобразователь и «резистор» — сопротивление. Первые образцы германиевых точечных транзисторов в Советском Союзе изготовлены в 1949 г. Серийный выпуск этих транзисторов был начат промышленностью в 1953 г. Однако они очень быстро уступили место более совершенным плоскостным транзисторам, одетым в защитный корпус из металла или пластмассы, обладающим более высокими электрическими и эксплуатационными качествами.
Уникальные преимущества транзистора перед радиолампой и использованием его вместо последней в различных электронных устройствах дает существенный и, что примечательно, качественный выигрыш в надежности, габаритах, экономичности, быстроте, готовности к работе и долговечности.
Транзисторы характеризируются многими параметрами, но для нашей схемы необходимы только их усилительные свойства, которые определяются статическим коэффициентом усиления по току Вст (чем выше Вст, тем больше усиление сигнала).
В зависимости от структуры исходного материала транзисторы бывают 2 видов (p-n-p-типа и n-р-n-типа), и в них протекает ток разной природы. Принцип работы транзисторов одинаков, а различие заключается лишь в полярности подключения источника питания к электродам этих, имеющих разную структуру, транзисторов, что подчеркивает необходимость быть особо внимательным при постановке их в схему.
Транзистор имеет 3 вывода — электрода. Вывод, идущий от области транзистора, испускающего носители тока, называется «эмиттер», а от области, собирающей носители тока, — «коллектор». Вывод от средней области — «база» («база» управляет током, текущим от эмиттера к коллектору).
Транзистор включают в электрическую цепь того или иного устройства с учетом этих 3 выводов. Внешний вид, маркировка и обозначение выводов используемых транзисторов показаны на рис. 1.
Рис. 1. Внешний вид и маркировка транзисторов
Промышленность выпускает сотни типов транзисторов, предназначенных для самых различных устройств. В настоящее время встречаются транзисторы как с обозначениями по старой, так и по новой системе. Кодирование транзистора выполняется с применением буквенных и цифровых индексов. Так, буквы всегда указывают общую характеристику прибора, а цифры — на конкретный его тип, назначение и применение.
По старому стандарту буквенный индекс П — означает, что транзистор плоскостной, а добавление к ней буквы М (МП) говорит о небольшой модернизации в технологии изготовления транзистора при прежних его параметрах.
Цифровой индекс — 1-, 2- или 3-значное число определяет значения допустимой (предельной) частоты и рассеиваемой мощности. Так, числа от 1 до 99 обозначают, что это транзисторы германиевые маломощные низкочистотные (МП39…МП42); от 401 до 499 — транзисторы германиевые маломощные высокочастотные (П402…П416).
По новой системе 1-й элемент обозначения (буква или цифра) говорит об исходном материале, из которого сделан прибор: Г (или 1) — германий, К (или 2) — кремний. Цифры присваиваются транзисторам, способным работать в более напряженных температурных условиях, чем транзисторы с буквенным обозначением.
2-й элемент обозначения — буква Т или П (Т — биполярный транзистор, П — полевой).
3-й элемент обозначения — цифра, характеризует значение рассеиваемой мощности и граничной частоты, например, 3 — маломощные высокочастотные транзисторы (КТ315…КТ361), 8 — транзисторы большой мощности средней частоты (КТ814…КТ817).
Ферритовая антенна (WA). В качестве приемной антенны на длинно- и средневолновом диапазонах в малогабаритных приемниках используется ферритовая антенна. По принципу действия она является магнитной, так как реагирует на магнитную составляющую электромагнитного поля, излучаемого передатчиком радиостанции. Отсюда и ее основное название — магнитная антенна. Она состоит из контурной катушки и ферритового стержня, имеющего хорошие магнитные свойства, что значительно повышает способность контурной катушки улавливать энергию радиоволн.
Сам ферритовый стержень изготавливается из смеси окисла железа с окислами других металлов, измельченных в порошок, крупинки которого изолированы друг от друга специальным веществом. Эту смесь прессуют в заданные формы и спекают. Феррит тверд и очень хрупок.
Характерной особенностью феррита является высокая магнитная проницаемость, то есть он обладает способностью концентрировать магнитные силовые линии. Практически это выражается в том, что даже от слабого электромагнитного поля феррит сильно намагничивается, и в контурной катушке антенны возникает э.д.с. (электродвижущая сила) примерно такой же силы, как если бы к приемнику была подключена комнатная антенна.
Промышленность выпускает ферритовые стержни для длинно- и средневолновых диапазонов марки 400НН, 600НН. Здесь цифра характеризует величину начальной магнитной проницаемости, а первая буква «Н» — низкочастотную область применения, вторая «Н» — принадлежность материала к никель-цинковым ферритам.
Одним из отличительных свойств магнитной, антенны является направленность действия. Максимальное напряжение сигнала, а следовательно, и наиболее громкий прием получаются при расположении продольной оси ферритового стержня горизонтально и перпендикулярно передающей радиостанции.
Магнитная антенна с катушками L1 и L2 представляет собой, в сущности, высокочастотный понижающий трансформатор. Контурная катушка L1 имеет очень высокое резонансное сопротивление (сотни кОм), и при подключении к ней транзистора с низким входным сопротивлением (300 Ом … 2 кОм) будет происходить шунтирование контура. В результате понизится избирательность из-за резкого падения добротности контура и последний перестанет выделять сигнал принимаемой станции.
Поэтому для лучшего согласования очень большого сопротивления контурной катушки с небольшим входным сопротивлением транзистора необходимо на транзистор подать только часть напряжения сигнала. Такое понижение напряжения производится с помощью катушки связи L2, вот почему она имеет в 10…20 раз меньше витков, чем катушка L1. При этом для сохранения добротности контурной катушки L1 ее смещают к одному из концов ферритового сердечника, а длина ее намотки не должна превышать 1/3 длины этого сердечника.
Намотку катушки L1 проще всего выполнять в 1 ряд виток к витку на каркасе из плотной бумаги, причем сам каркас должен с небольшим усилием перемещаться вдоль ферритового стержня. Также наматывается и катушка L2. Крайние витки катушек,
- Сделай сам, 1994 № 03 - Альманах «Сделай сам» - Сделай сам / Хобби и ремесла
- Горит камин уютно и светло. Инфракрасный теплый пол... ('Сделай сам' №1∙2017) - Журнал «Сделай сам» - Сделай сам / Хобби и ремесла
- Цветы из ткани. Базовый уровень - Ирина Барабанова - Хобби и ремесла