Читать интересную книгу Логика. Учебное пособие. Издание 2-е - Александр Ивин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 56

Классическая логика удовлетворяет требованию вести от истины только к истине. Однако многие ее положения о следовании плохо согласуются с нашим привычным представлением о нем.

В частности, классическая логика говорит, что из противоречия логически следует все что угодно. Например, из противоречивого утверждения «Токио – большой город, и Токио не является большим городом» следуют наряду с любыми другими утверждения: «Математическая теория множеств непротиворечива», «Луна сделана из зеленого сыра» и т.п. Но между исходным утверждением и этими якобы вытекающими из него утверждениями нет никакой содержательной связи. Здесь явный отход от обычного представления о следовании.

Точно так же обстоит дело и с классическим положением, что логические законы вытекают из любых утверждений. Наш логический опыт отказывается признать, что, скажем, утверждение «Лед холодный или лед не холодный» можно вывести из утверждений типа «Два меньше трех» или «Аристотель был учителем Александра Македонского». Следствие, которое выводится, должно быть как-то связано с тем, из чего оно выводится. Классическая логика пренебрегает этим очевидным обстоятельством.

Важную роль во всех наших рассуждениях играют условные утверждения, формулируемые с помощью союза «если…, то…». Они выполняют много различных задач, но их типичная функция – обоснование одних утверждений ссылкой на другие. К примеру, электропроводность меди можно обосновать, ссылаясь на то, что она металл: «Если медь – металл, то она проводит электрический ток».

Условное утверждение в логике называется импликацией.

Классическая логика так истолковывает условное утверждение «Если А, то В»: оно ложно только в том случае, когда А истинно, а В ложно, и истинно во всех остальных случаях. Оно истинно, в частности, когда А ложно или когда В истинно. Содержательная, смысловая связь утверждений А и В при этом во внимание не принимается. Если даже они никак не связаны друг с другом, составленное из них условное утверждение может быть истинным.

Так истолкованное условное утверждение получило название материальной импликации. Согласно ее определению, истинными должны считаться такие, к примеру, утверждения: «Если Луна обитаема, то дважды два равно четырем», «Если Земля – куб, то Солнце – треугольник» и т.п. Очевидно, что, если даже материальная импликация полезна для многих целей, она все-таки плохо согласуется с обычным пониманием условной связи.

Прежде всего эта импликация плохо выполняет функцию обоснования. Вряд ли являются в каком-либо разумном смысле обоснованиями такие утверждения, как: «Если Наполеон умер на Корсике, то закон Архимеда открыт не им», «Если медь – египетское божество, она электропроводна». Нельзя сказать, что, поставив перед истинным утверждением произвольное высказывание, мы тем самым обосновали это утверждение. Классическая же логика говорит: истинное утверждение может быть обосновано с помощью любого утверждения.

Трудно отнести к обоснованиям и такие истинные материальные импликации, как: «Если львы не имеют зубов, то у жирафов длинные шеи», «Если дважды два равно пяти, то Юпитер обитаем» и т.п. Однако классическая логика говорит: с помощью ложного утверждения можно обосновать все, что угодно.

Эти и подобные им положения об обосновании, отстаиваемые классической логикой, получили название парадоксов материальной импликации. Они не согласуются с привычными представлениями относительно обоснования одних утверждений с помощью других.

Таким образом, классическая логика не может быть признана удачным описанием логического следования. Первым на это указал еще в 1912 г. американский логик К. Льюис. Тогда логика находилась на подъеме, она казалась безупречной, и критика Льюиса в ее адрес не была воспринята всерьез. Его даже обвинили в непонимании существа дела. Но он продолжал заниматься этой проблемой и предложил новую теорию логического следования, в которой материальная импликация замещалась другой условной связью – строгой импликацией. Это было большим шагом вперед, хотя и оказалось, что строгая импликация тоже не лишена собственных парадоксов.

Более совершенное описание условной связи и логического следования было дано в 50-е гг. немецким логиком В.Аккерманом и американскими логиками А.Андерсеном и Н.Белнапом. Им удалось исключить не только парадоксы материальной импликации, но и парадоксы строгой импликации. Введенная ими импликация получила название релевантной (т.е. уместной), поскольку ею можно связывать только утверждения, имеющие какое-то общее содержание.

В настоящее время теория логического следования является одним из наиболее интенсивно развивающихся разделов неклассической логики. Интересный новый подход недавно намечен немецким логиком Х.Весселем. Он предложил разделить две задачи, ранее решавшиеся одновременно: сначала описать основные правила логического следования, а уже затем вводить разные типы условных связей, или импликаций. Оценка этого подхода – дело будущего.

Логика квантовой механики

Возникновение квантовой механики, пришедшей на смену классической механике Ньютона, произвело подлинный переворот в физическом мышлении.

Пересмотр традиционных представлений привел к возникновению идеи особой логики квантовой механики.

Предполагалось, что теории классической физики, описывающие факты, опираются на законы обычной логики – логики макромира; квантовая же физика имеет дело не просто с фактами, а с их вероятностными связями, и в ней рассуждают, опираясь на совершенно иные схемы мышления. Выявление и систематическое описание последних – задача специальной логики микромира.

Эту идею впервые высказал американский математик Д. фон Нейман. В середине 30-х гг. им вместе с другим американским математиком Д. Биркгофом была построена особая квантовая логика, положившая начало еще одному направлению неклассической логики. Позднее немецкий философ Г. Рейхенбах построил еще одну логику с целью устранения «причинных аномалий», возникающих при попытках применить классическое причинное объяснение к квантовым явлениям. К настоящему времени предложены десятки разных логических систем, стремящихся выявить своеобразие рассуждений о квантовых объектах.

Эти «квантовые логики» серьезно различаются как множествами принимаемых в них законов, так и способами своего обоснования. Чаще всего в них отказываются от классических законов ассоциативности и дистрибутивности, касающихся сложных утверждений, построенных с помощью союзов «и» и «или». Иногда отбрасывается даже закон исключенного третьего.

В начальный период своего развития квантовая логика встретила как критику (физики Н. Бор, В. Паули), так и одобрение (физики К.Вайцзеккер, В. Гейзенберг, М. Борн). Длительная полемика не внесла, однако, ясности в вопрос: действительно ли квантовая механика руководствуется особой логикой? Если даже это так, нужно признать, что исследования в данном направлении не оказали сколько-нибудь заметного воздействия на развитие самой механики. Постепенно квантовая логика стала даже отходить от нее и искать приложения в других областях. Одно из таких наметившихся приложений – диалог двух исследователей, придерживающихся по обсуждаемому вопросу противоположных точек зрения, но пользующихся общим языком диалога.

Паранепротиворечивая логика

Наука непримирима к противоречиям и успешно борется с ними. Но в жизни многих научных теорий, особенно в начале их развития, имеются периоды, когда они не свободны от внутренних противоречий.

Логика, требующая исключения противоречий, должна считаться с этим обстоятельством. К тому же ей самой присущи внутренние противоречия (логические парадоксы), периодически доставляющие немало беспокойства.

Классическая логика подходит к противоречиям несколько прямолинейно. Согласно одному из ее законов, из противоречия следует все, что угодно. Это означает, что противоречие запрещается, притом запрещается под угрозой, что в случае его появления в теории окажется доказуемым любое утверждение. Очевидно, что тем самым теория будет разрушена.

Однако реально никто не пользуется этим разрешением выводить из противоречий все, что попало. Практика научных рассуждений резко расходится в данном пункте с логической теорией.

В качестве реакции на это рассогласование в последние десятилетия начали разрабатываться различные варианты паранепротиворечивой логики. Несколько необычное ее название призвано подчеркнуть, что она иначе трактует противоречие, чем классическая логика.

Исключается, в частности, возможность выводить из противоречий любые утверждения. Доказуемость в теории противоречия перестает быть смертельно опасной угрозой, нависшей над ней. Этим не устраняется, конечно, принципиальная необходимость избавляться от противоречий в процессе дальнейшего развития теории. Интересно отметить, что одним из первых (еще в 1910 г.) сомнения в неограниченной приложимости закона непротиворечия высказал русский логик Н.А.Васильев. «Предположите, – говорил он, – мир осуществленного противоречия, где противоречия выводились бы, разве такое познание не было бы логическим?» Васильев писал не только научные статьи, но и стихи. В них иногда своеобразно преломлялись его логические идеи, в частности идея воображаемых (возможных) миров:

1 ... 10 11 12 13 14 15 16 17 18 ... 56
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Логика. Учебное пособие. Издание 2-е - Александр Ивин.
Книги, аналогичгные Логика. Учебное пособие. Издание 2-е - Александр Ивин

Оставить комментарий