Шрифт:
Интервал:
Закладка:
Как это часто бывает, открытие фуллеренов не стало результатом целенаправленного поиска. Основное направление работ в лаборатории Р. Смолли в Университете Райса (Техас), где в 1980-е годы было сделано открытие, связанное с исследованиями структуры металлических кластеров. Методика подобных исследований основана на измерении масс-спектров частиц, которые образуются в результате интенсивного воздействия лазерного излучения на поверхность исследуемого материала.
«В августе 1985 года в лабораторию Смолли приехал известный астрофизик Г. Крото, – пишет Александр Валентинович Елецкий в «Соросовском образовательном журнале», – который работал над проблемой отождествления спектров инфракрасного излучения, испускаемого некоторыми межзвездными скоплениями. Одно из возможных решений этой проблемы, достаточно давно стоявшей в астрофизике, могло быть связано с кластерами углерода, который, как известно, составляет основу межзвездных скоплений. Целью визита Крото в Техас была попытка, воспользовавшись аппаратурой лаборатории Смолли, по масс-спектру кластеров углерода получить заключение об их возможной структуре. Результаты экспериментов привели в шоковое состояние его участников. В то время как для большинства исследованных ранее кластеров типичные значения магических чисел составляют в зависимости от взаимного расположения атомов значения 13, 19, 55 и т п., в масс-спектре кластеров углерода наблюдались явно выраженные пики с числом атомов 60 и 70. Единственным непротиворечивым объяснением такой особенности кластеров углерода явилась гипотеза, согласно которой атомы углерода образуют стабильные замкнутые сферические и сфероидальные структуры, впоследствии названные фуллеренами».
Эта гипотеза, подтвержденная в дальнейшем более детальными исследованиями, по существу и легла в основу открытия фуллеренов. Публикация о первых наблюдениях фуллеренов была направлена в журнал «Nature» уже через 20 дней после приезда Крото в Техас. В этой статье помимо предположения о сфероидальной форме фуллеренов содержались идеи о возможности существования эндоэдральных молекул фуллеренов, то есть молекул, внутри которых заключены один или несколько атомов другого элемента. Дальнейшие исследования подтвердили и это предположение.
Расстояние между молекулами в таких кристаллах меньше, чем расстояние между атомами в решетке алмаза. Кроме того, в ячейках обоих видов есть «особый» фуллерен, взаимодействующий с остальными через 12-16 очень коротких и сильных межмолекулярных связей. Все это и определяет необычайную твердость кристаллического фуллерита: она в два-три раза выше твердости алмаза.
За открытие фуллеренов Г. Крото, Р. Смолли и Р. Керл были удостоены Нобелевской премии по химии.
Подлинный бум в исследованиях фуллеренов начался в 1990 году. Это произошло после того, как немецкий астрофизик В. Кретчмер и американский исследователь Д. Хафман разработали технологию получения фуллеренов в достаточных количествах. Технология основана на термическом распылении электрической дуги с графитовыми электродами и последующей экстракции фуллеренов из продуктов распыления с помощью органических растворителей, например, бензола, толуола. Новая технология позволила многочисленным научным лабораториям исследовать фуллерены не только в молекулярной форме, но также и в кристаллическом состоянии. В результате были сделаны новые открытия. Так, в 1991 году американские ученые обнаружили сверхпроводимость фуллереновых кристаллов, легированных атомами щелочных металлов, с критической температурой от 18 до 40 градусов Кельвина в зависимости от сорта щелочного металла. И по сегодняшний день исследования и разработки в области фуллеренов являются одним из приоритетных направлений мировой науки и технологии. Подобная популярность связана с удивительными физико-химическими свойствами фуллеренов, открывающими возможность их прикладного использования.
Молекулы фуллеренов обладают высокой электроотрицательностью. Они способны присоединять к себе до шести свободных электронов. Это делает фуллерены сильными окислителями. Они способны образовывать множество новых химических соединений с новыми интересными свойствами. В состав химических соединений фуллеренов, входят шестичленные кольца углерода с одинарными и двойными связями. Поэтому можно рассматривать их как трехмерный аналог ароматических соединений. Кристаллы фуллеренов представляют собой полупроводники с шириной запрещенной зоны 1-2 эВ. Они обладают фотопроводимостью при облучении видимым светом.
«Широк круг возможных технологических применений фуллеренов, – пишет Езерский. – Так, использование фуллеренов в качестве присадки к смазочному маслу существенно (до 10 раз) снижает коэффициент трения металлических поверхностей и соответственно повышает износостойкость деталей и агрегатов. Активно разрабатываются также другие возможности массовых применений фуллеренов, связанные, в частности, с созданием нового типа аккумуляторных батарей, не подверженных, в отличие от традиционно используемых батарей на основе лития, разрушению электродов. Особого внимания заслуживает проблема использования фуллеренов в медицине и фармакологии. Одна из основных трудностей, стоящих на пути успешного решения этой задачи, связана с созданием водорастворимых нетоксичных соединений фуллеренов, которые могли бы вводиться в организм человека и доставляться с кровью в орган, подлежащий терапевтическому воздействию. Широко обсуждается в литературе идея создания противораковых медицинских препаратов на основе водорастворимых эндоэдральных соединений фуллеренов (молекулы фуллеренов, внутри которых помещен один или несколько атомов какого-либо элемента) с внедренными внутрь структуры фуллеренов радиоактивными изотопами. Введение такого лекарства в ткань позволит избирательно воздействовать на пораженные опухолью клетки, препятствуя их дальнейшему размножению».
Сканирующий зондовый микроскоп
Наиболее молодое и вместе с тем перспективное направление в исследовании свойств поверхности – сканирующая зондовая микроскопия. Зондовые микроскопы имеют рекордное разрешение – менее 0,1 нм. Они могут измерить взаимодействие между поверхностью и сканирующим ее микроскопическим острием – зондом – и выводят трехмерное изображение на экран компьютера.
Методы зондовой микроскопии позволяют не только видеть атомы и молекулы, но и воздействовать на них. При этом – что особенно важно – объекты могут изучаться не обязательно в вакууме (что обычно для электронных микроскопов), но и в различных газах и жидкостях.
Изобрели зондовый – сканирующий туннельный микроскоп в 1981 году сотрудники Исследовательского центра фирмы ИБМ Г. Биннинг и Х. Рорер (США). Через пять лет за это изобретение они были удостоены Нобелевской премии.
Биннинг и Рорер попытались сконструировать прибор для исследования участков поверхности размером менее 10 нм. Итог превзошел самые смелые ожидания: ученым удалось увидеть отдельные атомы, размер которых в поперечнике составляет лишь около одного нанометра. В основе работы сканирующего туннельного микроскопа лежит квантово-механическое явление, называемое туннельным эффектом. Очень тонкое металлическое острие – отрицательно заряженный зонд – подводится на близкое расстояние к образцу, тоже металлическому, заряженному положительно. В тот момент, когда расстояние между ними достигнет нескольких межатомных расстояний, электроны начнут свободно проходить через него – «туннелировать»: через зазор потечет ток.
Очень важное значение для работы микроскопа имеет резкая зависимость силы туннельного тока от расстояния между острием и поверхностью образца. При уменьшении зазора всего на 0,1 нм ток возрастет примерно в 10 раз. Поэтому даже неровности размером с атом вызывают заметные колебания величины тока.
Чтобы получить изображение, зонд сканирует поверхность, а электронная система считывает величину тока. В зависимости от того, как эта величина меняется, острие либо опускается или поднимается. Таким образом, система поддерживает величину тока постоянной, а траектория движения острия повторяет рельеф поверхности, огибая возвышенности и углубления.
Острие перемещает пьезосканер, который представляет собой манипулятор из материала, способного изменяться под действием электрического напряжения. Пьезосканер чаще всего имеет форму трубки с несколькими электродами, которая удлиняется или изгибается, перемещая зонд по разным направлениям с точностью до тысячных долей нанометра.
Информация о движении острия преобразуется в изображение поверхности, которое строится по точкам на экране. Участки разной высоты для наглядности окрашиваются в различные цвета.
В идеале на конце острия зонда должен находиться один неподвижный атом. Если же на конце иглы случайно оказалось несколько выступов, изображение может двоиться, троиться. Для устранения дефекта иглу травят в кислоте, придавая ей нужную форму.
- Правила пользования Сборником рецептур блюд и кулинарных изделий для предприятий общественногого питания. Руководство - Ирина Самулевич - Прочая научная литература
- Целостный метод – теория и практика - Марат Телемтаев - Прочая научная литература
- Тенденции развития мирового рынка сельскохозяйственной продукции: эффекты переходной экономики и вызовы торговой интеграции - Анна Иволга - Прочая научная литература