Шрифт:
Интервал:
Закладка:
Эта идея также имела античные корни, возвращаясь к открытию Пифагора, что корни музыкальной гармонии находятся в отношениях чисел. Но она страдала от очевидной проблемы. Эта идея неоднозначна: имеется много красивых согласований шести голосов. Даже хуже, оказалось, что есть больше, чем шесть планет. И Галилей, современник Кеплера, открыл четыре луны, вращающихся вокруг Юпитера. Так что была еще и другая система орбит в небе. Если теория Кеплера была верна, она должна была быть применима и к вновь открытой системе. Но она была не применима.
Отдельно от этих двух предположений о математической структуре космоса Кеплер сделал три открытия, которые привели к реальному прогрессу в науке. Это были три закона, благодаря которым он сегодня широко известен, предложенные после многолетнего изнурительного кропотливого анализа данных, которые он украл у Тихо Браге. Они были не столь красивы, как другие предложения Кеплера, но они работали. Более того, один из них совершал нечто, чего Кеплер не смог бы сделать иным образом, а именно, было найдено соотношение между скоростями и диаметрами орбит. Три закона Кеплера не только согласуются с данными по всем шести планетам, они согласуются и с наблюдениями спутников Юпитера.
Кеплер открыл эти три закона потому, что он принял унификацию Коперника в свои логические заключения. Коперник сказал, что Солнце находится в центре (или, на самом деле, вблизи центра) вселенной, но в его теории планеты двигались бы тем же образом, было бы Солнце там или нет. Его единственной ролью было освещение сцены. Успех теории Коперника привел Кеплера к вопросу, а не может ли нахождение Солнца вблизи центра каждой планетной орбиты указывать на реальное совпадение центров. И не может ли Солнце, вместо этого, играть некоторую роль в определении планетных орбит. Может ли Солнце некоторым образом оказывать силу на планеты, и может ли эта сила быть объяснением их движения?
Чтобы ответить на эти вопросы, Кеплер выяснил роль точного положения Солнца в каждой орбите. Его первый большой прорыв заключался в открытии, что орбиты не являются кругами, они являются эллипсами. И у Солнца определенная роль: оно находится точно в фокусе эллипса каждой орбиты. Это был первый закон Кеплера. Вскоре после этого он открыл свой второй закон, который заключался в том, что скорости планет на их орбитах возрастают или уменьшаются, когда планеты двигаются ближе к Солнцу или дальше от него. Позднее он открыл третий закон, который управляет отношениями скоростей планет.
Эти законы отметили некоторый глубокий факт унификации солнечной системы, поскольку законы применимы ко всем планетам. Награда заключалась в том, что впервые мы имели теорию, которая могла делать предсказания. Предположим, открыта новая планета. Можем ли мы предсказать, какой будет ее орбита? До Кеплера никто бы не смог. Но, имея законы Кеплера, все, что нам нужно, это два наблюдения положения планеты, и мы сможем предсказать ее орбиту.
Эти открытия вымостили дорогу Ньютону. Великим прозрением Ньютона было увидеть, что сила, которую Солнце оказывает на планеты, является той же самой, как и сила гравитации, которая удерживает нас на Земле, и потому объединить физику небес с физикой на Земле.
Конечно, идея силы, испускаемой от Солнца на планеты, была абсурдной для большинства ученых того времени. Они верили, что пространство пустое, там нет носителя, который мог бы переправлять такую силу. Более того, не было никаких видимых ее проявлений – никакой руки, протянувшейся от Солнца до каждой планеты, – а невидимое ничто не может быть реальным.
Все это хорошие уроки для будущих объединителей/унификаторов. Первый в том, что математическая красота может ввести в заблуждение. Простые наблюдения, сделанные на основании данных, часто более важны. Другой урок в том, что корректные унификации имеют следствия для явлений, о которых не подозревали в момент, когда унификация придумывалась, как в случае с применением законов Кеплера к лунам Юпитера. Правильные объединения также поднимают вопросы, которые могут показаться абсурдными в тот момент, но которые приводят к дальнейшим унификациям, как это было с постулатом Кеплера о силе, действующей от Солнца на планеты.
Самое важное, мы увидели, что реальная революция часто требует нескольких новых предложений по унификации, идущих вместе, чтобы поддерживать друг друга. В революции Ньютона было несколько предложенных унификаций, которые одновременно одержали триумф: объединение Земли с планетами, объединение Солнца со звездами, объединение покоя и равномерного движения и объединение гравитационной силы на Земле с силой, путем которой Солнце влияет на движение планет. Проще говоря, ни одна из этих идей не могла бы уцелеть, но вместе они побили своих противников. В результате получилась революция, которая трансформировала каждый аспект нашего понимания природы.
В истории физики была одна унификация, которая больше других может служить моделью того, что физики пытаются сделать в последние тридцать лет. Это объединение электричества и магнетизма, полученное Джеймсом Клерком Максвеллом в 1860е. Максвелл использовал мощную идею, именуемую полем, которая была придумана британским физиком Майклом Фарадеем в 1840е, чтобы объяснить, как сила может передаваться через пустое пространство от одного тела к другому. Идея в том, что поле есть величина, подобная числу, которое живет в каждой точке пространства. Когда вы движетесь сквозь пространство, величина поля изменяется непрерывно. Величина поля в каждой точке также эволюционирует во времени. Теория дает нам законы, которые говорят, как поле изменяется, когда мы движемся в пространстве и через время. Эти законы говорят нам, что величина поля в отдельной точке также подвержена влиянию поля в соседних точках. Поле в точке может также подвергаться влиянию материального тела в той же точке. Таким образом, поле может переносить силу от одного тела к другому. Тут не требуется верить в призрачное действие на расстоянии.
Одно из полей, которые изучал Фарадей, было электрическое поле. Это не число, но вектор, который мы можем изобразить как стрелку и который может изменять свою длину и направление. Представим такую стрелку в каждой точке пространства. Представим, что концы стрелок в близких точках соединены друг с другом резиновыми лентами. Если я потяну за одну, лента потянет и соседнюю. Стрелки также подвергаются влиянию электрических зарядов. Эффект влияния в том, что стрелки упорядочиваются так, что они подходят к близлежащим отрицательным зарядам и отходят от близлежащих положительных зарядов.
Фарадей также изучал магнетизм. Он ввел другое поле, другую коллекцию стрелок, которые он назвал магнитным полем; эти стрелки предпочитают указывать на полюса магнитов (см. Рис.2).
Рисунок 2. Силовые линии, сопровождающие магнитное поле, возникающее от стержневого магнита.
Фарадей записал простые законы для описания того, как стрелки электрического и магнитного полей изменяются под действием близких зарядов и магнитных полюсов, а также под действием стрелок близких полей. Он и другие проверили законы и нашли, что они дают предсказания, которые согласуются с экспериментом.
Среди открытий того времени было явление, которое смешивало электрические и магнитные эффекты. Например, движущийся по кругу заряд возбуждает магнитные поля. Максвелл осознал, что эти открытия указывают на объединение электричества и магнетизма. Чтобы полностью объединить их, он изменил уравнения. Когда он сделал это, просто добавив один член, его объединение стало объединением со следствиями.
Новые уравнения позволили электрическому и магнитному полям переходить друг в друга. Эти преобразования вызывают волны меняющихся рисунков, в которых первый есть электрическое поле, а затем магнитное поле, и которые двигаются через пространство. Такие движущиеся рисунки могут, среди других вещей, колебать электрический заряд назад и вперед. Надвигающиеся волны могут переносить энергию из одного места в другое.
Самая ошеломляющая вещь была в том, что Максвелл смог рассчитать скорость этих волн из своей теории, и нашел, что она такая же, как скорость света. Далее это принесло ему успех. Волны, проходящие через электрические и магнитные поля, есть свет. Максвелл не намеревался создать теорию света, он намеревался объединить электричество и магнетизм. Но, сделав это, он достиг кое-чего большего. Это пример того, как хорошая унификация будет иметь неожиданные следствия как для теории, так и для эксперимента.
Новые предсказания немедленно последовали. Максвелл осознал, что электромагнитные волны должны быть на всех частотах, а не только на частотах видимого света, и это приводит к открытию радио, инфракрасного света, ультрафиолетового света и так далее. Это иллюстрирует другой исторический урок: Когда кто-то предлагает правильную новую унификацию, следствия становятся очевидны очень быстро. Многие из этих явлений наблюдались в первые годы после того, как Максвелл опубликовал свою теорию.