Читать интересную книгу Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 9 10 11 12 13 14 15 16 17 ... 47

Биогаз можно получать путем метанового брожения куриного помета или навоза или других жидких отходов растительного и животного происхождения, осадков сточных вод, твердых бытовых отходов, причем побочный продукт этого процесса – отличные удобрения. Наконец, из отходов лесопиления и деревообработки можно под высоким давлением делать так называемые пеллеты (маленькие цилиндрические брусочки), которые охотно используются в Германии, Австрии и скандинавских странах в специальных котлах для отопления домов. Выход тепла у них почти в два раза больше, чем у обычных дров, а места они занимают намного меньше.[3-37]

Из этих технологий наибольшее распространение в мире получили биоэтанол, биодизель и биогаз.

3.2. Растительное сырье разделяют на три поколения

3.2.1. Растительное сырье первого поколения

Биотопливо первого поколения производят из сахара, крахмала, растительного масла и животного жира, используя традиционные технологии. Основными источниками сырья являются семена или зерно. Например, семена подсолнечника прессуют для получения растительного масла, которое затем может быть изпользовано в биодизеле. Из пшеницы получают крахмал, после его сбраживания – биоэтанол. Вместе с тем из подсолнечника, пшеницы и других подобных культур можно произвести продукты питания, поэтому возникает конкуренция с жизненно важным для человечества сегментом рынка пищевым. Более того, производство биотоплива из подобных культур требует существенной финансовой поддержки государства и зачастую экономически невыгодно. Кроме того, многие экологи уверены, что при производстве данных видов биотоплива выбрасывается слишком много парниковых газов, что перекрывает экологическую выгоду от использования этих биотоплив.

3.3. Растительное сырье второго поколения

К биотопливам второго поколения относятся все виды жидкого и газообразного биотоплива, которые производятся не из пищевых культур: древесины, шелухи, и другой биомассы – органических отходов растительного и животного происхождения. Лигноцеллюлозный этанол получают из гидролизатов целлюлозы, используя: нагревание паром, ферменты и другие предобработки. С помощью брожения из данных сахаров можно получить этанол таким же путем, как и биоэтанол первого поколения. Побочным продуктом этого процесса является лигнин, которой может быть сожжен как не влияющий на концентрацию углекислого газа в атмосфере для выработки тепла и энергии. Также лигноцеллюлозный этанол сокращает выбросы парниковых газов на 90 % по сравнению с ископаемой нефтью.

3.4. Растительное сырье третьего поколения

Совершенно новый видбиотопливо третьего поколения или водорослевое топливо изготовляется из водорослей. Водоросли – одновременно дешевое и высокопродуктивное сырье для получения жидкого биотоплива. Эксперты утверждают, что с одного акра водорослей можно произвести в 30 раз больше биотоплива, чем с акра любого наземного растения. Более того, жидкое биотопливо из водорослей может без труда заменить продукты из нефти без качественных потерь для пользователей и с улучшением экологической составляющей. Эксперты утверждают, что как только жидкое биотопливо из водорослей станет экономически рентабельным для производства в большим масштабах (а сейчас к этому приближаются), то нефтяное топливо уже будет неконкурентоспособным.[3-38]

Биотопливо (кроме биогаза [3-26]) пока дороже топлива, получаемого из углеводородных ископаемых. Но развитие технологий скоро изменит эту ситуацию, а экологические требования и задачи стимулирования агропрома делают это горючее интересным уже сегодня.[3-36]. Рассмотрим две главные статьи расхода энергоресурсов: производство электроэнергии и транспорт. Возобновляемые ресурсы второго поколения: отходы лесопереработки (термохимия и биотехнологии), торф (только ежегодный прирост), навоз (через биогаз), солома (через газификацию), твердые бытовые отходы (биогаз и газификация) могут дать около 12.6 трлн. кВт ч/год электроэнергии. Если к этому добавить потенциальный ресурс мискантуса (слоновьей травы (Miscanthus Giganteus), выращиваемого на площади 200 млн. га (Это ок. 20 % мирового резерва пахотно пригодных земель, который сейчас по самой скромной оценке составляет 1 млрд. гектар), то можно получить в сумме приблизительно 29.4 трлн. кВт ч/год электроэнергии. Сейчас уровень потребления электроэнергии в мире приближается к отметке 56 трлн. кВт ч/год в том числе за счет сжигания ископаемого топлива примерно 4.8 млрд. ту.т. (37.5 трлн. кВт ч/год) образом, потенциал биоэнергоресурсов второго поколения позволяет сократить почти на 80 % использование ископаемого топлива, а главное, полностью исключить сжигание нефтепродуктов для производства электроэнергии. [3-39] Глава 3.5. Как обстоят дела с транспортом? Сейчас мировое потребление нефтепродуктов на транспортные нужды составляет около 4.1 млрд. ту.т. Если использовать ещё 40 % мирового резерва земли для выращивания двух культур: топинамбура в качестве сырья для производства биоэтанола, и ятрофы (Jatropha) – сырья для получения биодизеля, то можно получить транспортное топливо эквивалентом примерно 1.7 млрд. ту.т. сократив на 40 % использование ископаемых углеводородов на транспорт.[3-39].

Таким образом, потенциал биоэнергоресурсов второго поколения, наряду с решением важнейшей экологической проблемы, позволяет вернуться к производству продовольствия из кукурузы, пшеницы, сахарного тростника, сои, рапса и пр. Дополнительные возможности связаны с технологией биоконверсии отходов животноводства и растениеводства в биогаз, позволяющей, наряду с энергоносителем, получить еще один весьма важный продукт – высокоэффективное, экологически безопасное органическое удобрение. Это удобрение обеспечивает увеличение урожайности различных культур не менее чем в 2 раза, повышая при этом устойчивость растений к неблагоприятным воздействиям среды, особенно к засухе. Переработка одного только навоза, помимо 0.41 млрд. ту.т. электроэнергии, позволит получить 14 млрд. тонн этого ценнейшего удобрения. По самым скромным подсчетам применение удобрения увеличит производство продовольствия в мире на 50 %. [3-39].

3.6. Зачем нужны биотоплива

Одним из главных преимуществ биотоплив называют сокращение выбрсов парниковых газов. Это, однако, не означает, что при сгорании биотоплив образуется меньше диоксида углерода (хотя и такое возможно). При сгорании биотоплива в атмосферу возвращается углерод, который ранее поглотили растения, поэтому углеродный баланс планеты остаётся неизменным. Ископаемые топлива – совсем другое дело: углерод в их составе миллионы лет оставался "за консервированным" в земных недрах. Когда он попадает в атмосферу, концентрация углекислого газа повышается. В том, что касается вредных выбросов, биотоплива несколько выигрывают у нефтяных. Большинство исследований показывают, что биотоплива обеспечивают снижение выбросов моноксида углерода и углеводородов. Кроме того, биотоплива практически не содержат серы. Вместе с тем, несколько увеличивается выброс оксидов азота, вдобавок, при неполном сгорании многих биотоплив в атмосферу попадают альдегиды. Но, в целом, по уровню вредных выхлопов биотоплива выигрывают у нефтяных.

3.7. Мировой возобновляемый энергетический ресурс

3.7.1. Твердое топливо

3.7.1.1. Использование древесного топлива и торфа

К твердому биотопливу относятся: пеллеты и гранулы из древесины, торфа, соломы, стеблей, древесная щепа, дрова, древесный уголь, торфяные брикеты.

Твердые энергоносители биологического происхождения (главным образом навоз, отходы древесина, торф) брикетируют, сушат и сжигают в каминах жилых домов и топках тепловых электростанций, вырабатывая дешевое электричество для бытовых и производственных нужд. Отходы древесины с минимальной степенью подготовки к сжиганию (опилки, кора, шелуха, солома и т. д.) прессуют в топливные брикеты или пеллеты, которые имеют форму цилиндрических или сферических гранул диаметром 8-23 мм и длину 10–30 мм.[3-41].

В стадии опытно-промышленной эксплуатации находятся электростанции, для которых организовано выращивание «энергетических лесов», т. е. работающие на сжигании в котлах древесины. Широко используются отходы лесопереработки и лесозаготовок, а также энергетического торфа для производства тепловой и электрической энергии (страны Скандинавии), как при прямом сжигании биомассы, так и через ее газификацию с последующим сжиганием генераторного газа[3-42].

3.7.1.2.Дрова

Дрова – древнейшее топливо, используемое человечеством. После того как, в соответствии с греческим мифом, Прометей похитил у богов огонь и дал его людям, биотопливо согревало пещеры, в которых жили наши древние предки, на огне они готовили пищу. И сегодня древесина служит основным топливом в очагах двух миллиардов жителей бедных стран и горит в каминах состоятельной части общества.

1 ... 9 10 11 12 13 14 15 16 17 ... 47
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава.
Книги, аналогичгные Биоэнергетика. Мир и Россия. Биогаз. Теория и практика. Монография - Евгений Панцхава

Оставить комментарий