Читать интересную книгу Большая Советская Энциклопедия (ПА) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 121 122 123 124 125 126 127 128 129 ... 246

  В системах аксиоматической теории множеств Э. Цермело и Цермело — Френкеля вопрос о множестве R (является ли оно собственным элементом) попросту снимается, т.к. аксиомы этих систем не позволяют рассматривать такое R (оно в этих системах не существует). В других системах (принадлежащих Дж. фон Нейману , П. Бернайсу, К. Гёделю ) такие R рассматривать можно, но эта совокупность множеств объявляется (при помощи соответствующих ограничительных аксиом) не множеством, а только «классом», т. е. заранее объявляется, что R не может являться ничьим (в т. ч. и своим собственным) элементом, чем опять-таки аннулируется расселовский вопрос. Наконец, в различных модификациях типов теории , идущих от А. Н. Уайтхеда (Великобритания) и самого Б. Рассела (например, в системах У. О. Куайпа, США), разрешается рассматривать любые множества, описанные осмысленными языковыми выражениями, и ставить относительно таких множеств любые вопросы, но зато сами выражения вроде «множество всех множеств, не являющихся своими собственными элементами «объявляются бессмысленным и ввиду нарушения некоторых соглашений лингвистического (синтаксического) характера. Аналогичным образом в упомянутых теориях устраняются и др. известные теоретико-множественные П. (например, парадокс Г. Кантора о мощности множества всех подмножеств «множества всех множеств», которая неминуемо должна была бы оказаться больше самой себя, и пр.).

  Однако ни одна из систем аксиоматической теории множеств не решает в полной мере проблему устранения П., поскольку гильбертовская программа обоснования математики оказалась невыполнимой: в силу теоремы К. Гёделя (1931) непротиворечивость достаточно богатых аксиоматических теорий (включая формальную арифметику натуральных чисел и тем более аксиоматическую теорию множеств), если и имеет место, не может быть доказана с помощью одних лишь методов, приемлемых с точки зрения традиционной гильбертовской теории доказательств. В рамках классической математики и логики это ограничение преодолевается привлечением более сильных (в известном смысле конструктивных, но уже не «финитных» в гильбертовском понимании) средств математических рассуждений, с помощью которых удалось получить доказательства непротиворечивости формализованной арифметики (П. С. Новиков , немецкие математики Г. Генцен, В. Аккерман, К. Шютте и др.). Интуиционистская и конструктивная школы (см. Конструктивное направление в математике) вообще не считают нужным рассматривать проблему П.: используемые ими «эффективные» способы построения математических теорий приводят по существу к совершенно новым научным системам, из которых с самого начала изгнаны «метафизические» методы рассуждений и образования понятий, повинные в появлении П. в классических теориях. Наконец, в рамках ультраинтуиционистской программы обоснования математики решение проблемы П. достигается за счёт решительного пересмотра самого понятия математического доказательства, что позволило, в частности, получить доказательства непротиворечивости (в ультраинтуиционистских терминах: «недостижимости противоречия») некоторых систем аксиоматической теории множеств.

  Обсуждавшиеся до сих пор П. часто именуют «логическими», поскольку они могут быть переформулированы в чисто логических терминах. Например, парадокс Рассела выглядит тогда следующим образом. Назовем свойства, не относящиеся к самим себе («синее», «глупое» и т.п.), «импредикабельными», в отличие от «предикабельных» свойств, относящихся к себе (например, «абстрактное»). Свойство «импредикабельное» импредикабельно в том и только в том случае, когда оно предикабельно. Впрочем, некоторые логики (например, советский учёный Д. А. Бочвар) причисляют к «собственно логике» («чистой логике») только узкое исчисление предикатов (быть может, с равенством), свободное от П. (см. Логика предикатов , Логика ). П. же, с точки зрения Бочвара, возникают уже в самой теории множеств (к которой относится и расширенное исчисление предикатов) из-за неограниченного применения так называемого принципа свёртывания (или принципа абстракции), позволяющего вводить в рассмотрение множества объектов, задаваемые с помощью произвольных свойств этих объектов (см. Определение через абстракцию ). Устранение П. достигается здесь при помощи многозначной логики : парадоксальным утверждениям (типа расселовского, например) приписывается третье (наряду с истиной и ложью), истинностное значение: «бессмысленность».

  Другой важный класс П., также возникающих при рассмотрении некоторых понятий теории множеств и многоступенчатой логики, связан с понятиями обозначения, именования, осмысления истины (лжи) и т.п.: это так называемые семантические П. К ним относятся, например, парадокс Ришара — Берри (в одной из формулировок которого речь идёт о фразе «наименьшее натуральное число, которое нельзя назвать посредством меньше чем тридцати трёх слогов», определяющей — по крайней мере согласно обычным представлениям об «определимости» — некоторое натуральное число при помощи тридцати двух слогов), наиболее древний из известных П.— так называемый «лжец», или «лгущий критянин» (порождаемый фразой «все критяне — лжецы», приписываемой критскому философу Эпимениду, или же просто фразой «я лгу»), а также парадокс Греллинга: назовем прилагательные, обладающие называемым ими свойством (например, «русское» или «многосложное»), негетерологическими, а прилагательные, не обладающие соответствующим свойством («английское», «односложное», «жёлтое», «холодное» и т.п.),— гетерологическими; тогда прилагательное «гетерологическое» оказывается гетерологическим в том и только в том случае, когда оно негетерологично. Поскольку семантические П. формулируются не столько в логико-математических, сколько в лингвистических терминах, их разрешение не считали существенным для оснований логики и математики; однако между ними и логическими П. имеется тесная связь: последние относятся к понятиям, а первые — к их именам (сравните парадоксы Рассела и Греллинга).

  Термин «П.» употребляется в логике и математике также в более широком, близком к разговорному смысле, когда речь идёт не о подлинном противоречии, а лишь несоответствии некоторых формальных экспликаций (уточнений) с их интуитивными прототипами. Например, так называемые П. материальной импликации «из лжи следует все, что угодно» и «истина следует из любого суждения», доказуемые в классической логике высказываний, обнаруживают несоответствие между разговорным иформально-логическими пониманиями отношения следования; «парадокс Скулема» в аксиоматической теории множеств, согласно которому понятие несчётного множества может быть выражено средствами счётной модели, показывает относительный характер понятий счётности и несчётности; аналогичный характер носят П., встречающиеся в модальной логике (несоответствие модальностей «возможно» и «необходимо» с их формально-аксиоматическими описаниями), в этике и др. Необходимо отметить, что высказанное выше противопоставление П., как рассуждений формально «правильных», и софизмов, основанных на заведомо ошибочных рассуждениях, в значительной мере условно; многие рассуждения, традиционно квалифицируемые как софизмы и «псевдопарадоксы», оказываются весьма важными в свете новых логических и методологических направлений. Например, известный в древности «П. кучи» (одно зерно не есть куча; прибавление одного зерна не создаёт кучу; миллион зёрен — это куча; в др. формулировках — «П. лысого» и т.п.) «разрешался» до недавнего времени простой ссылкой на недостаточную определённость фигурирующего в нём понятия «куча». Сознательный же отказ от такого рода прямолинейных «решений» и выяснение возможностей точного использования таких понятий (типа «много» и т.п. появляются одной из важнейших исходных идей упоминавшегося выше ультраинтуиционистского направления. К понятию «П.» близки также понятия антиномия и апория .

  П., то есть выводы из, казалось бы, верных (во всяком случае общепринятых) исходных принципов, противоречащие опыту (и, быть может, интуиции и здравому смыслу), встречаются не только в чисто дедуктивных науках, но и, например, в физике (так, «парадоксальными», то есть противоречащими многовековой научной традиции, выводами изобилуют теория относительности, квантовая механика). Анализ многих таких П. (например, фотометрического и гравитационного П. в физике и космогонии; см. Космологические парадоксы ) так же, как в логике и математике, сыграл важную роль для соответствующих научных дисциплин. В более широком смысле сказанное можно отнести вообще к любым уточнениям научных теорий, обусловленным тем, что новые экспериментальные данные вступают в противоречие с принципами, ранее казавшимися надёжно проверенными; такие уточнения являются неотъемлемой частью общего процесса развития науки.

1 ... 121 122 123 124 125 126 127 128 129 ... 246
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Большая Советская Энциклопедия (ПА) - БСЭ БСЭ.

Оставить комментарий