Читать интересную книгу "Империя – II - Анатолий Фоменко"

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 116 117 118 119 120 121 122 123 124 ... 170

Мы воспользуемся примером списка имен армянских католикосов для того, чтобы показать, как меняется гисторамма частот разнесений связанных имен при постепенном разрушении системы дубликатов в списке (остальные хронологические списки имен ведут себя аналогично).

Обратимся снова к рис. 27. На нем помимо сплошной кривой изображена более сглаженная – пунктирная. Это гистограмма f2 (x) для (искаженного) списка имен армянских католикосов, в часть глав которого (30 из 175) было добавлено одно и то же имя.

Видно, что эта гисторамма существенно ближе к прямой линии, чем исходная, хотя она и повторяет в точности ее структуру (места всплесков не изменились, но сами всплески стали более пологими).

Наконец, случайная перестановка 20% имен из списка АК полностью разрушила структуру дубликатов в нем (с «точки зрения» нашей методики): вычисленная после этого гистограмма f2 (x) в точности совпала с линейной функцией (пунктирная прямая на рис. 27 изображает одновременно эту гисторамму и гистограмму f1 (x)).

3. Мера различия между гистограммами частот разнесения имен

Здесь мы введем меру различия между распределениями Pз=x и Pз=x|A, где A – некоторое локальное событие. Эта мера имеет смысл вероятности того, что реализованное в эксперименте различие между этими двумя распределениями возникнет при гипотезе о правильности данного хронологического списка Х.

Предположим, что рассматриваемый хронологический список Х является результатом некоторого случайного эксперимента. При этом, мы будем считать, что общее количество имен в списке Х и их кратности вхождения в список заранее фиксированы (неслучайны), а порядок имен в списке Х является случайным элементом, который мы обозначим через w_1.

Соответствующее вероятностное пространство обозначим через (W_1, S_1, P_1), где W_1 – множество всех перестановок имен в списке Х; S_1 = 2^W 1, P_1 – некоторая вероятностная мера на S_1, относительно которой мы пока не будем делать никаких предположений.

Таким образом, порядок имен в хронологическом списке Х мы рассматриваем как элементарный исход в вероятностной схеме (W_1, S_1, P_1).

Рассмотрим разбиение списка Х на N глав одинакового объема (Мы предполагаем, что длина списка n делится на N.) Число глав N считаем фиксированным и не зависящим от случая. Как и выше, построим по списку Х, разбитому на N глав, вероятностную схему повторного выбора с возвращением двух элементов списка Х и определим случайную величину з – разнесение выбранных элементов списка (абсолютную величину разности номеров глав, их содержащих).

Соответствующее этой схеме вероятностное пространство (W_2, S_2, P_2) состоит из множества элементарных исходов W_2, которое представляет собой множество пар порядковых номеров выбранных элементов в списке : w_2 = i, j, алгебры событий S_2 = 2^W 2 и равномерного распределения:

P_2(w_2) = 1/n^2 для любого w_2EW_2.

Поскольку мера P_2 не зависит от w_1, то итоговое вероятностное пространство (W, S, P) является произведением пространств (W_1, S_1, P_1) и (W_2, S_2, P_2):

W = W_1xW_2; S=2^W; P(w)=P(w_1, w_2)=P_1(w_1)xP_2(w_2).

На вероятностном пространстве (W, S, P) определена случайная величина з: 

з(w)=з(w_1, w_2)=з(w_2).

Пусть A – некоторое событие из S. Сформулируем предположение о вероятностной мере P_1 (то есть о вероятностном механизме образования порядка имен в правильном хронологическом списке).

Предположение. Предположим, что случайная величина з не зависит от события A:

Pз=x|A = Pз=x для всех x.

Никаких других условий на меру P_1 мы накладывать не будем.

Сделанное предположение зависит от выбора события A. Если в качестве A выбрать локальное событие (определение локальных событий дано выше), то это предположение вытекает (для правильного хронологического списка) из сформулированного выше следствия гипотезы Н_0: 

Pз=x|A, з»е = Pз=x|з»е,

где е – радиус затухания зависимости в списке Х.

Здесь мы без ограничения общности будем считать, что е=0.

Общий случай сводится к этому простой модификацией вероятностой схемы (W_2, S_2, P_2).

Глава 3. Матрицы связей для хронологических списков имен

1. Как узнать – какие именно части летописи являются дубликатами?

В предыдущей главе с помощью гистограмм частот разнесений связанных имен проверялась гипотеза об отсутствии дубликатов в данном хронологическом списке имен.

В тех случаях, когда присутствие дубликатов было обнаружено, определялись типичные сдвиги между дубликатами в списке. Однако метод гистограмм частот связанных имен не дает прямого ответа на следующий основной вопрос:

Какие именно части списка являются дубликатами и в какой мере?

Напомним, что в соответствии с понятием слоистой хроники, два отрезка хронологического списка называются дубликатами, если они содержат соответственно дублирующие друг друга слои.

В данной главе мы опишем метод, позволяющий отвечать на этот вопрос. Результатом его применения к историческому хронологическому списку будет являться так называемая «матрица связей» (фрагментов) данного списка. Это – квадратная таблица, показывающая в какой мере те или иные отрезка списка имен являются дубликатами друг друга («связаны» между собой).

Мы уже вкратце описали идею метода, пользуясь модельной задачей о колоде карт (см. главу 1). Проведем теперь эти рассуждения уже не для модельной задачи, а для реальных хронологических списков.

Пусть имеется список имен Х, который может содержать ошибки, пропуски и (или) дубликаты.

Неизвестный нам истинный список имен, лежащий в основе реального списка Х, обозначим через Y. Таким образом, Y – воображаемый список имен, содержащий полные неискаженные данные (скажем, об именах правителей данного государства) для длительного исторического промежутка времени I_Y.

Реальный список имен Х, который находится в нашем распоряжении является искажением, «зашумлением» списка Y с возможной потерей доли информации.

Предположим, что промежуток времени I_Y был описан многими летописцами – очевидцами или современниками происходящих событий.

Каждый из них составлял свою короткую летопись Z_i по современным ему событиям. Поскольку мы изучаем сейчас не весь текст летописи, а только имена, извлеченные из нее, то можем считать (для удобства), что каждый летописец составлял некий короткий хронологический список имен, который мы также обозначим через Z_i.

Если промежуток времени I_Y описывался K летописцами, то в основе наших знаний о события, происходивших на этом промежутке, лежит K коротких летописей Z_1, Z_2,…, Z_K (включая и утраченные летописи). Множество этих летописей (коротких хронологических списков имен) мы обозначим через Z_i.

Множество Z_i образует некоторое покрытие списка Y.

Это покрытие мы будем считать:

а) Достаточно плотным, то есть предположим, что каждый отдельный год из промежутка I_Y описывался не одним, а сразу несколькими летописцами независимо друг от друга.

б) Состоящим из уже искаженных – как-то разреженных и местами ошибочных коротких хронологических списков. В самом деле, даже в своем исходном виде каждая из летописей Z_1, Z_2,…, Z_K упоминала, возможно, не все имена правителей, не всех исторических деятелей, участвующих в событиях. Кроме того, при последующем переписывании и компиляциях появлялись ошибки, пропуски, произвольные вставки и т.п. Для простоты рассуждений мы будем считать все эти ошибки присущими летописям Z_i с самого начала.

Итогом работы по составлению хронологии в ее современном виде явилась некоторая новая склейка списков Z_i (новое совмещение их на оси времени), которая и породила известный нам хронологический список имен Х.

Рассмотрим два отрезка Д_1, Д_2 списка имен Х и попытаемся ответить на вопрос: нет ли такой пары Z_i, Z_j коротких хронологических списков из множества Z_i, которые в списке Y (в реальности) относились к одному и тому же месту, а в списке Х оказались «подклеенными» к Д_1 и Д_2 соответственно? Так же как и в модельном примере с картами (см. главу 1), заключаем, что если такая пара есть, то увеличивается вероятность того, что имена из Д_1 и Д_2 окажутся близко друг от друга где-то в списке Х (за счет третьей, «склеивающей» летописи Z_m, смешивающей имена из Z_i и Z_j).

2. Математическое описание связей между дубликатами в летописи

Пусть дан хронологический список имен Х. Начиная с этого места забудем на время о разбиении списка Х на главы. В отличие от задачи определения величин сдвигов между дубликатами, для построения матрицы связей временная шкала в списке не используется. После построения матрицы мы снова воспользуемся ею для содержательной интерпретации результатов.

1 ... 116 117 118 119 120 121 122 123 124 ... 170
На этом сайте Вы можете читать книги онлайн бесплатно русскую версию Империя – II - Анатолий Фоменко.

Оставить комментарий