Читать интересную книгу Большая Советская Энциклопедия (ГИ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 110 111 112 113 114 115 116 117 118 ... 127

  Гироскопы с двумя степенями свободы используют в Г. у. чаще всего в качестве дифференцирующих и интегрирующих гироскопов, которые осуществляют дифференцирование (или интегрирование) входного сигнала, т. е. измеряют производную (или интеграл) от той величины, на воздействие которой реагирует Г. у. Например, в гиротахометре дифференцирующий гироскоп, реагируя на поворот объекта, измеряет его угловую скорость, а поплавковый интегрирующий гироскоп (см. Гироскопический интегратор), реагируя на угловую скорость объекта, измеряет угол его поворота.

  Физические принципы построения чувствительных гироскопических элементов. Различают гироскопы с механическим ротором, с жидкостным ротором, вибрационные, лазерные, ядерные. Наиболее распространены гироскопы с механическим ротором: у них носителем кинетического момента является быстровращающееся массивное твёрдое тело — ротор. Носителем кинетического момента может быть и жидкая среда. Вибрационные гироскопы в качестве чувствительного элемента содержат вибрирующие массы (например, ротор с упругим подвесом или упругие пластины) и служат для определения угловой скорости объекта. Лазерный гироскоп представляет собой устройство, в котором используется оптический квантовый генератор направленного излучения и содержится плоский замкнутый контур (образованный тремя и более зеркалами), где циркулируют два встречных световых потока (луча); он также служит для определения угловой скорости объекта (см. Квантовый гироскоп). Ядерный гироскоп основан на том свойстве, что ядро атома содержит протоны, обладающие спиновыми и орбитальными моментами количества движения, а также связанными с ними магнитными моментами. При этом наличие механического вращательного момента у ядра сообщает ему свойства гироскопа, а наличие магнитного момента даёт возможность ориентировать ось этого гироскопа в пространстве и определять её положение. Ядерные гироскопы могут использоваться в качестве стабилизаторов направления, датчиков угловых скоростей.

  Типы подвесов гироскопов. В гироскопах с механическим ротором различают механический, поплавковый, газовый, магнитный, электростатический типы подвесов. В большинстве Г. у. используются гироскопы с механическим подвесом; выполненным в виде карданова подвеса (см. Гироскоп).

  В различных двух- и трёхстепенных гироскопах для разгрузки механических опор применяются жидкостные, или поплавковые, подвесы (например, в поплавковом интегрирующем гироскопе), вследствие чего подобные гироскопы мало подвержены вибрационным, ударным и др. возмущающим воздействиям и обладают высокой точностью.

  Существенное повышение точности Г. у. достигается при применении гироскопов с газовым подвесом. Ротор такого гироскопа обычно имеет сферическую форму и опирается па чрезвычайно тонкий газовый слой, образующийся между шаром-ротором и специальной опорой. Такой шар является практически свободным гироскопом. Газовые опоры могут также применяться в осях подвеса ротора и кардановых колец.

  В некоторых Г. у. используется гироскоп с магнитным подвесом, ротор которого, выполненный в виде ферритовой сферы, поддерживается магнитным полем во взвешенном состоянии. Необходимые характеристики поля автоматически регулируются специальной следящей системой. Другой разновидностью магнитного подвеса является т. н. криогенный подвес ротора, в котором используется взаимодействие магнитных полей, создаваемых токами в сверхпроводниках. Поддерживающие силы магнитного поля возникают при изменении положения ротора по отношению к элементам подвеса. Материал ротора, катушек электромагнитов и специальных экранов приводится в сверхпроводящее состояние путём глубокого охлаждения.

  В гироскопе с электростатическим подвесом ротор представляет собой полую сферу, наружная поверхность которой имеет высокую проводимость. Ротор помещается между электродами, к которым подводится высокое напряжение, регулируемое специальной следящей системой. Под действием электростатических сил ротор центрируется в пространстве между электродами.

  Основные Г. у. По назначению Г. у. подразделяют на следующие группы: 1) Г. у. для определения угловых отклонений объекта. Сюда относятся различные астатические и позиционные гироскопы, а именно: гироскопы направления, определяющие азимутальные отклонения объекта (углы рыскания корабля или летательного аппарата), и гировертикали или гиромаятники, определяющие отклонения объекта относительно плоскости горизонта (углы килевой и бортовой качки корабля, углы тангажа и крена летательного аппарата); 2) Г. у. для определения угловых скоростей и угловых ускорений объекта, в которых используются дифференцирующие гироскопы. К ним относятся гиротахометры и вибрационные гироскопы, определяющие угловые скорости вращения объекта и гиротахоакселерометры, определяющие угловые скорости и угловые ускорения вращения объекта; 3) Г. у. для определения интегралов от входных величин, в которых используются интегрирующие гироскопы: гироскопические интеграторы угловых скоростей, определяющие углы отклонения объекта; интегро-дифференцирующие гироскопы, определяющие углы и угловые скорости вращения объекта, а также гироскопические интеграторы линейных ускорений, которые служат для нахождения линейной скорости объекта; 4) Г. у. для стабилизации объекта или отдельных приборов и устройств, а также для определения угловых отклонений объекта, называют гиростабилизаторами; 5) Г. у. для решения навигационных задач. Сюда относятся: гирокомпасы, определяющие курс объекта и азимут (пеленг) ориентируемого направления; гиромагнитные компасы, определяющие магнитный курс объекта, гирошироты, предназначенные для определения широты места; гирошироткомпасы, с помощью которых определяются курс и широта местоположения объекта; гирогоризонткомпасы, служащие для определения курса объекта и углов отклонения его относительно плоскости горизонта, инерциальные навигационные системы, которые предназначены для нахождения ряда параметров, необходимых для навигации объектов; гироорбитанты, которые служат для определения углов рыскания, искусственного спутника Земли; гирорулевые, обеспечивающие автоматическое управление курсом корабля.

  Г. у. применяют в морском флоте, авиации, ракетной и космической технике, народном хозяйстве для решения разнообразных задач навигации и управления подвижными объектами, а также при проведении некоторых специальных работ (маркшейдерских, геодезических, топографических и др. — см. Гиротеодолит).

  Лит.: Крылов А. Н., Общая теория гироскопов и некоторых технических их применений. Собр. трудов, т. 8, М. — Л., 1950; Булгаков Б. В., Прикладная теория гироскопов, 2 изд., М., 1955; Николаи Е. Л., Теория гироскопов, Л. — М., 1948; Ишлинский А. Ю., Механика гироскопических систем, М., 1963; Кудревич Б. И., Теория гироскопических приборов, т. 1—2, Л., 1963—65; Меркин Д. Р., Гироскопические системы, М., 1956; Ройтенберг Я. Н., Гироскопы, М., 1966; Граммель Р., Гироскоп, его теория и применения, пер. с нем., т. 1—2, М., 1952; Пельпор Д. С., Гироскопические приборы и автопилоты, М., 1964; Ривкин С. С., Теория гироскопических устройств, ч. 1—2, Л., 1962—64 (библ.).

  А. Ю. Ишлинский, С. С. Ривкин.

Гироскопический интегратор

Гироскопи'ческий интегра'тор, гироскопическое устройство, содержащее т. и. интегрирующий гироскоп, который служит для определения интеграла от воздействующей на него величины. Различают Г. и. угловой скорости и Г. и. линейных ускорений.

  Г. и. угловой скорости служит для определения угла поворота объекта. Наиболее совершенным является поплавковый Г. и. (рис. 1). Ротор 1 гироскопа установлен в рамке 2, представляющей собой поплавок цилиндрической формы; ось Oy (Oh) вращения поплавка установлена в подшипниках, расположенных в корпусе 4 прибора, имеющего также цилиндрическую форму. Зазор 5 между поплавком и корпусом, а также всё свободное пространство внутри корпуса заполнено жидкостью с большой плотностью. Указанная система образует жидкостный подвес. Подъёмная сила жидкости должна быть равна весу гироузла; при этом подшипники 3 подвеса оказываются практически полностью разгруженными; жидкость в зазоре между цилиндрическими поверхностями поплавка и корпуса прибора обеспечивает демпфирование, момент которого пропорционален угловой скорости вращения поплавка. Применение жидкостного подвеса частично предохраняет ось подвеса (ось вращения поплавка) от воздействия на неё вибраций, ударов и др. В приборе предусмотрено автоматическое регулирование температуры, что необходимо для поддержания постоянства плотности и вязкости жидкости, а также постоянства положения центра тяжести поплавкового гироузла и центра давления жидкости относительно оси вращения гироузла.

1 ... 110 111 112 113 114 115 116 117 118 ... 127
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Большая Советская Энциклопедия (ГИ) - БСЭ БСЭ.

Оставить комментарий