Шрифт:
Интервал:
Закладка:
* * *
Главное устройство в МП, которое связывает все узлы в единую систему, — внутренняя шина данных. По ней все устройства обмениваются сигналами. Например, если МП требуется обратиться к внешней дополнительной памяти, то при исполнении соответствующей команды на шину данных выставляется нужный адрес, от устройства управления поступает через нее же запрос на обращение к нужным портам ввода/вывода. Если порты готовы, адрес поступает на выходы портов (т. е. на соответствующие выводы контроллера), затем по готовности принимающий порт выставляет на шину принятые из внешней памяти данные, которые загружаются в нужный регистр, после чего шина данных свободна. Для того чтобы все устройства не мешали друг другу, все это строго синхронизировано, при этом каждое устройство имеет, во-первых, собственный адрес, во-вторых, может находиться в трех состояниях: работать на ввод, на вывод или находиться в третьем состоянии, не мешая другим работать.
Под разрядностью МП обычно понимают разрядность чисел, с которыми работает АЛУ, соответственно, такую же разрядность имеют и рабочие регистры. Например, все ПК-процессоры от i386 до последних инкарнаций Pentium были 32-разрядными, большинство последних моделей от Intel и AMD относятся уже к 64-разрядным. Большинство микроконтроллеров общего назначения — 8-разрядные, но все большую популярность приобретают 32-разрядные, обладающие принципиально большими возможностями при практически той же цене. Интересно, что развитие промежуточной ветви 16-разрядных контроллеров практически остановилось ввиду нецелесообразности.
* * *
Заметки на полях
Обычно тактовая частота универсальных МК невелика (хотя инженеру 1980-х, когда ПК работали на частотах не выше 6 МГц, она показалась бы огромной) — порядка 8-16 МГц, иногда до 20 МГц или несколько более. И это всех устраивает — дело в том, что обычные МК и не предназначены для разработки быстродействующих схем. Если требуется быстродействие, то используется другой класс интегральных схем — ПЛИС, «программируемые логические интегральные схемы» (английское название самой популярной сейчас их разновидности — FPGA, field-programmable gate array). Простейшая ПЛИС представляет собой набор никак не связанных между собой логических элементов (наиболее сложные из них могут включать в себя и некоторые законченные узлы, вроде триггеров и генераторов), которые в процессе программирования такого чипа соединяются в нужную схему. Комбинационная логика работает гораздо быстрее тактируемых контроллеров, и для построения сложных логических схем в настоящее время применяют только ПЛИС, от использования дискретных элементов («рассыпухи») в массовых масштабах уже давно отказались. Еще одно преимущество ПЛИС — статическое потребление энергии для некоторых серий составляет единицы микроватт, в отличие от МК, которые во включенном состоянии потребляют достаточно много (если не находятся в режиме энергосбережения). В совокупности с более универсальными и значительно более простыми в обращении, но менее быстрыми и экономичными микроконтроллерами, ПЛИС составляют основу большинства массовых электронных изделий, которые вы видите на прилавках. В этой книге мы, конечно, рассматривать ПЛИС не будем — в любительской практике, в основном из-за дороговизны соответствующего инструментария и высокого порога его освоения, они не используются, а для конструирования одиночных экземпляров приборов даже для профессиональных применений их использовать нецелесообразно.
* * *
Если подробности внутреннего функционирования МП нас волнуют не очень (центральный узел — АЛУ — мы уже «изобретали» в главе 15, и этого достаточно, чтобы понимать, что именно происходит внутри процессорного ядра), то обмен с внешней средой нас как раз интересует во всех деталях. Для этого служат порты ввода/вывода (I/O-port, от Input/Output). В этом термине имеется некоторая неопределенность, т. к. те, кто программировал для ПК на ассемблере, помнят, что в ПК портами ввода/вывода (ПВВ) назывались регистры для управления всеми устройствами, кроме непосредственно процессорного ядра. В микроконтроллерах то же самое называют регистрами ввода/вывода (РВВ) — это регистры для доступа ко встроенным компонентам контроллера, внешним по отношению к вычислительному ядру. А это все узлы, которыми непосредственно управляет пользователь: от таймеров и последовательных портов до регистра флагов и управления прерываниями. Кроме ОЗУ, доступ к которому обеспечивается специальными командами, все остальное в контроллере управляется через РВВ, и путать с портами ввода/вывода их не следует.
ПВВ в МК служат для обмена с «окружающей средой» (управляются они, естественно, тоже внутренними регистрами ввода/вывода). На схеме рис. 18.2 показано 3 ПВВ: А, В и С, в реальных МК их может быть и больше, и меньше. Еще важнее число выводов этих портов, которое чаще всего совпадает с разрядностью процессора (но не всегда, как это было у 8086, который имел внутреннюю 16-разрядную структуру, а внешне выглядел 8-разрядным). Если мы заставим 8-разрядные порты «общаться», например, с внешней памятью, то на двух из них можно выставить 16-разрядный адрес, а на оставшемся — принимать данные. А как быть, если портов два или вообще один? (К примеру, в микроконтроллере ATtiny2313 портов формально два, но один усеченный, так что общее число линий составляет 15). Для того чтобы даже в такой ситуации это было возможно, все внешние порты в МП всегда двунаправленные. Скажем, если портов два, то можно сначала выставить адрес, а затем переключить порты на вход и принимать данные. Естественно, для этого порты должны позволять работу на общую шину — т. е. либо иметь третье состояние, либо выход с общим коллектором для объединения в «монтажное ИЛИ».
Варианты для обоих случаев организации выходной линии порта показаны на рис. 18.3, где приведены упрощенные схемы выходных линий микроконтроллеров семейства 8048 — когда-то широко использовавшегося предшественника популярного МК 8051 (например, 8048 был выбран в качестве контроллера клавиатуры в IBM PC). В современных МК построение портов несколько сложнее (в частности, вместо резистора там полевой транзистор), но для уяснения принципов работы это несущественно.
Рис. 18.3. Упрощенные схемы портов ввода/вывода МК 80481: а — портов 1 и 2, б — порта 0
По первому варианту (рис. 18.3, а) в МК 8048 построены порты 1 и 2. Когда в порт производится запись, то логический уровень поступает с прямого выхода защелки на статическом D-триггере на вход схемы «И», а с инверсного — на затвор транзистора VT2. Если этот уровень равен логическому нулю, то транзистор VT1 заперт, а VT2 открыт, на выходе также логический ноль. Если уровень равен логической единице, то на время действия импульса «Запись» транзистор VT1 открывается, а транзистор VT2 запирается (они одинаковой полярности). Если на выходе присутствует емкость (а она всегда имеется в виде распределенной емкости проводников и емкости входов других компонентов), то через открытый VT1 протекает достаточно большой ток заряда этой емкости, позволяющий сформировать хороший фронт перехода из 0 в 1. Как только импульс «Запись» заканчивается, оба транзистора отключаются, и логическая единица на выходе поддерживается резистором R1. Выходное сопротивление открытого транзистора VT1 примерно 5 кОм, а резистора — 50 кОм. Любое другое устройство, подключенное к этой шине, при работе на выход может лишь либо поддержать логическую единицу, включив свой подобный резистор параллельно R1, либо занять линию своим логическим нулем — это, как видите, и есть схема «монтажное ИЛИ». При работе на вход состояние линии просто считывается во время действия импульса «Запись» со входного буфера (элемент В на рис. 18.3, а).
Второй вариант (рис. 18.3, б), по которому устроен порт 0, есть обычный выходной каскад КМОП с третьим состоянием, т. е. такой порт может работать на выход, только полностью занимая линию, остальные подключенные к линии устройства при этом должны смиренно внимать монополисту, воспринимая сигналы. Это обычно не создает особых трудностей и схемотехнически даже предпочтительно ввиду симметрии выходных сигналов и высокого сопротивления для входных. Единственная сложность возникает при сопряжении такого порта с линией, работающей по первому варианту, т. к. при логической единице на выходе могут возникнуть электрические конфликты, если кто-то попытается выдать в линию логический ноль (ток от источника пойдет через два распахнутых транзистора).
Для обеспечения работы трехстабильного порта по схеме «монтажное ИЛИ» применяют хитрый прием: всю линию «подтягивают» к напряжению питания с помощью внешнего резистора (во многих МК существует встроенный отключаемый резистор, установленный аналогично R1 в схеме рис. 18.3, а), и нормальное состояние всех участвующих трехстабильных портов — работа на вход в третьем состоянии. В этом режиме на линии всегда будет логическая единица. На выход же линию переключают только, когда надо выдать логический ноль. В этом случае, даже при одновременной активности нескольких портов, конфликтов не возникнет.
- Твой друг электроника - Ю. Верхало - Радиотехника
- В помощь радиолюбителю. Выпуск 13 - Михаил Адаменко - Радиотехника
- В помощь радиолюбителю. Выпуск 7 - Вильямс Никитин - Радиотехника