Шрифт:
Интервал:
Закладка:
Какие звезды называют красными гигантами и как велика их средняя плотность?
Красные гиганты – это огромные холодные звезды. Они превышают Солнце по диаметру в десятки и сотни раз, а по массе – от 1,5 до 15 (сверхгиганты – до 50) раз. Температура их поверхности составляет 3–4 тысячи градусов Кельвина. Красные гиганты имеют сложное внутреннее строение. Их ядро богато гелием с небольшой примесью тяжелых элементов, но не является источником ядерной энергии, поскольку в нем не происходит ядерных реакций. Плотность вещества в ядре красного гиганта настолько велика, что оно по своему строению близко к белому карлику. Вокруг ядра расположен тонкий энерговыделяющий слой, где и протекают термоядерные реакции превращения водорода в гелий. Затем следует очень протяженная оболочка, занимающая около 90 процентов радиуса звезды. В этой оболочке заключено более половины массы красного гиганта. Несмотря на высокую плотность в ядре, средняя плотность красного гиганта намного ниже солнечной и, как правило, не превышает одного миллиграмма на кубический сантиметр. Так, средняя плотность красного сверхгиганта Бетельгейзе составляет всего шесть десятитысячных миллиграмма на кубический сантиметр, или 1/2000 плотности воздуха при нормальном атмосферном давлении!
Что такое коричневые карлики?
Согласно современным теоретическим представлениям, только объекты с массой, превышающей массу Юпитера в 80 и более раз, становятся настоящими звездами. Объекты с массой менее 17 масс Юпитера обречены стать планетами. Коричневыми карликами называют объекты с промежуточной между двумя вышеописанными типами массой. Они слишком велики, чтобы считаться планетами, но недостаточно велики, чтобы внутри них возникли термоядерные реакции, характерные для звезд (в их недрах могут протекать термоядерные реакции только с самыми «легко-горящими» изотопами). Существование этих едва теплых, а потому темных и трудноразличимых объектов удалось экспериментально доказать только в последнее время (с помощью космического телескопа «Хаббл»).
Что представляют собой физические двойные звезды и как их различают по способу наблюдения?
До XVIII века считалось, что двойственность звезд есть следствие вполне случайного их расположения, при котором они хотя и видны одна вблизи другой, но в пространстве далеки друг от друга. Однако в начале XIX века английский астроном Уильям Гершель открыл, что некоторые двойные звезды предствляют собой физически связанные пары. Такие двойные звезды стали называть физическими двойными (в отличие от оптических двойных, не связанных физически). Физическая двойная звезда – это пара звезд, которые находятся в пространстве достаточно близко друг к другу и, подчиняясь закону всемирного тяготения, вращаются вокруг общего центра масс. Физические двойные звезды подразделяют на три основных класса: визуально-двойные, спектрально-двойные и зетменные двойные. Указанная классификация отражает не сущностную разницу между двойными звездами, а способы, которыми их определяют (разделяют их компоненты). К визуально-двойным относят все двойные звезды, доступные непосредственному разделению на компоненты (хотя бы с помощью больших телескопов). В настоящее время в каталоги занесено уже более 70 тысяч визуально-двойных звезд. Спектрально-двойные звезды невозможно увидеть раздельно с помощью современных оптических средств. Но их двойственность обнаруживается по периодическим изменениям в их спектре – смещениям или разделениям спектральных линий. Если оба компонента двойной звезды имеют одинаковый блеск и особенно если они принадлежат к одному спектральному классу, то периодическое раздвоение линий и их слияние проявляются особенно ясно. Если же видны линии спектра только одного компонента, то они периодически колеблются около некоторого среднего положения. Принцип Доплера дает этому исчерпывающее объяснение: смещение и раздвоение линий происходит вследствие орбитального движения компонентов вокруг общего центра масс, причем плоскость орбиты составляет не очень большой угол с лучом зрения. В настоящее время известно около 2500 спектрально-двойных звезд. Затменными двойными называют такие звезды, у которых плоскость орбиты их компонентов составляет достаточно малый угол с лучом зрения наблюдателя, вследствие чего одна звезда может на время полностью или частично заслонить другую. Открыто уже более 4000 затменно-двойных звезд.
Как велики периоды обращения двойных звезд?
Самые большие периоды обращения имеют физические двойные звезды, компоненты которых расположены далеко друг от друга – на тысячи и десятки тысяч астрономических единиц (то есть в тысячи и десятки тысяч раз дальше, чем Земля от Солнца). Это так называемые широкие пары. Их периоды обращения должны достигать сотен тысяч и даже миллионов лет. Так, например, звезда Проксима Кентавра движется в пространстве вместе с яркой двойной звездой альфа Кентавра, совершая оборот вокруг нее за несколько миллионов лет. На небе их разделяет угловое расстояние в 2 градуса, что соответствует линейному расстоянию не менее 10 тысяч астрономических единиц. Самый короткий период обращения, составляющий всего 81 минуту 38 секунд, имеет затменная двойная звезда WZ Sge в созвездии Стрелы. (Пока это минимальный из известных орбитальных периодов во Вселенной. Даже периоды обращения искусственных спутников Земли дольше.)
Почему глаз Медузы, которую держит звездный Персей, подмигивает?
На старинных звездных картах Персей в правой руке держит высоко занесенный меч, а в левой – страшную голову горгоны Медузы. Наблюдая небо, арабы в Средние века заметили, что один глаз горгоны светит ровно, а второй время от времени подмигивает. Поэтому они назвали мигающий глаз Медузы (звезда Бета Персея) дьяволом (по-арабски – Алголь). В 1782–1783 годах за странным поведением Алголя внимательно наблюдал английский астроном Джон Гудрайк. Ему удалось установить в «подмигивании» глаза горгоны строгую периодичность. На протяжении 60 часов Алголь сохраняет неизменным свой блеск звезды 2,2 звездной величины, а затем в продолжение почти 9 часов блеск снижается до 3,5 звездной величины и вновь возрастает до прежнего значения. Полный период изменения визуальной звездной величины составляет 2,867 суток. Гудрайк предложил блестящую гипотезу для объяснения переменности Алголя: «Если бы не было еще слишком рано высказывать соображения о причинах переменности, я мог бы предположить существование большого тела, вращающегося вокруг Алголя». Подтвердить правильность этой гипотезы удалось лишь спустя столетие, когда в спектре Алголя были замечены периодические смещения спектральных линий, причем период этих смещений в точности соответствовал периоду изменения блеска. Тем самым было доказано, что Алголь – спектрально-двойная звезда, а колебания блеска вызваны периодическим затмением главной звезды ее спутником. Так подмигивающий глаз небесной Медузы оказался первой затменно-переменной звездой, обнаруженной человеком.
Почему древние считали Сириус ярко-красной звездой?
Самая яркая звезда земного неба Сириус, несмотря на радужные переливы, имеет ясно выраженный голубой цвет. Арабские астрономы свидетельствуют, что в Х веке нашей эры звезда имела такой же внешний вид, как и сегодня. Однако древнеримский философ Сенека (I век нашей эры) и основоположник геоцентрической системы мира Клавдий Птолемей (II век нашей эры) утверждали, что Сириус – ярко-красная звезда. Упоминания о красном Сириусе встречаются и у некоторых древних народов. Могли ли так быстро, за несколько столетий, измениться свойства этой звезды? Интересный ответ на этот вопрос предложил Ф. Ю. Зигель, автор широко известной книги «Сокровища звездного неба». Известно, что Сириус – двойная звезда, вторым компонентом которой является белый карлик, известный как Сириус В. Он имеет значительно меньшую светимость, а потому плохо различим рядом с сиянием Сириуса А. Не могло ли случиться так, что Сириус В, до того как превратиться в белый карлик, был красным гигантом, подавлявшим своим излучением голубизну Сириуса А? Затем он сбросил свои газовые оболочки и сжался в белый карлик, что, по современным представлениям, характерно для эволюции большинства звезд. Но почему тогда в исторических хрониках первых веков нашей эры нет сообщений о вспышке новой звезды в созвездии Большого Пса? Возможны два объяснения: эта вспышка была кратковременной и пришлась на период, когда Сириус скрылся в лучах Солнца; астрономия раннего Средневековья находилась в глубоком упадке, и такое событие, как вспышка новой, никем зарегистрировано не было. Не исключено, конечно, и какое-то иное объяснение красного Сириуса, неведомое современной науке.
Почему цефеиды называют маяками Вселенной?
Цефеиды – это особый тип так называемых регулярных переменных звезд. В поверхностных слоях цефеид нарушено равновесие сил тяготения и сил газового давления. Вследствие этого их радиусы периодически изменяются на 10–15 процентов, а температура – более чем на 1000 градусов. Вместе с этим периодически меняется и видимый блеск звезд. Цефеиды получили свое название от звезды-прототипа дельта Цефея, звездная величина которой меняется от 3,6 до 4,3 с периодом в 5,4 суток. Как было установлено в 1912 году, периоды изменения блеска цефеид тесно связаны с их светимостью. Указанная связь обусловила исключительное значение этих звезд для измерения внегалактических расстояний. Обнаружив цефеиду в другой галактике и замерив период ее пульсации, можно определить ее светимость (абсолютную звездную величину). Сравнив эту величину с видимым блеском (визуальной звездной величиной), можно оценить расстояние до цефеиды, а значит, и до галактики, в которой она находится. Вот почему цефеиды иногда называют маяками Вселенной.