Шрифт:
Интервал:
Закладка:
Одним из драйверов операционной аналитики является эволюция продуктов, которые существуют главным образом для обеспечения сбора и анализа данных. В некоторых случаях физические продукты служат не более чем инструментами сбора данных для аналитических процессов.
Таких продуктов появляется все больше. В эту категорию попадают многие доступные в Интернете бесплатные услуги. Возьмем, например, бесплатную электронную почту. Компании предоставляют ее вовсе не из любви к общественно-полезной деятельности, а потому что могут многое узнать об ее пользователях. Провайдер получает возможность размещать рекламу с учетом поведения пользователей, и она окупается, когда пользователи на нее откликаются. В некоторых случаях сервисы фактически читают от начала до конца электронные письма пользователей и анализируют их, чтобы генерировать рекламные предложения. Скажем, если вы часто переписываетесь с друзьями на спортивные темы, то можно держать пари, что будете получать много предложений, связанных со спортом. Кроме того, провайдер электронной почты может продать информацию о вашем интересе к спорту другим организациям, готовым заплатить за поиск любителей спорта. Так что надо очень внимательно читать правила хранения личной информации, прежде чем соглашаться с ними. В шестой главе мы поговорим о вопросах конфиденциальности более подробно.
На рынке сегодня также присутствуют аналитические процессы, которые напрямую превращаются в продукты. Наглядный тому пример – рекомендательный механизм популярного поставщика потокового видео Netflix{4}. Он использует данные о навигации пользователя по сайту и определяет, какие фильмы могут ему понравиться. Этот рекомендательный механизм рассматривается Netflix как реальный продукт. За него отвечают собственные продакт-менеджеры, управляющие им точно так же, как любым другим продуктом. Netflix постоянно старается добавить своему рекомендательному механизму новые функции и свойства, усилить его привлекательность для пользователей. Так, введен интерфейс Max, который превращает подбор рекомендаций в игру{5}.
Успех Netflix в огромной степени приписывают именно ее рекомендательному механизму, хотя этот продукт, по сути, состоит из аналитики и использования данных. Механизм также представляет собой законченный операционный процесс, который управляет своими алгоритмами и предоставляет результаты пользователям миллионы раз в день без вмешательства человека.
Аналитические продукты стирают границы между отраслями
Теперь давайте рассмотрим интересный пример того, как ориентированные на аналитику продукты начинают стирать границы между отраслями. Речь идет о новой волне персональных приборов контроля физической формы, носимых на запястье или талии. Такие устройства на рынке предлагаются Nike, Jawbone и FitBit, в данном случае мы остановимся на Nike{6}.
Если выйти на улицу и спросить у 100 первых встречных, что они знают о компании Nike, то 99 % из них ответят, что это производитель спортивной одежды, спортивного снаряжения или чего-то в том же духе. Все ответы правильные. По крайней мере, на протяжении многих лет именно этой продукцией славилась компания. Но произошедшие за последнее время изменения заставляют нас пересмотреть представление о том, в какой же отрасли на самом деле работает Nike. То же самое происходит и со многими другими предприятиями.
В 2012 г. Nike выпустила продукт под названием FuelBand{7}. Это устройство носят на запястье, как часы, а измеряет оно показатели физической активности, например количество сделанных за день шагов, и некоторые характеристики сна. Подобные устройства сегодня стали очень популярны. Сейчас, когда я пишу эту книгу, одно из таких как раз надето на моем запястье. Давайте посмотрим, каким образом FuelBand изменяет традиционную бизнес-модель Nike и посягает на ее отраслевую классификацию.
Хотя большинство людей все еще считают Nike производителем спортивной одежды и обуви, FuelBand ломает это устоявшееся представление. Начать с того, что FuelBand представляет собой высокотехнологичный прибор, снабженный датчиками, передатчиком и т. п. Таким образом, Nike сегодня работает в производственной отрасли хай-тека.
Что первым делом должны сделать потребители после покупки FuelBand, чтобы обеспечить его эффективное использование? Скачать на свой компьютер, планшет или мобильник программный продукт. Итак, сегодня Nike также является поставщиком ПО.
Ваша компания по-прежнему работает в традиционной для себя отрасли?По мере того как традиционные производители вдруг обнаруживают, что им приходится в интересах своих потребителей внедрять датчики, собирать данные и применять аналитику, границы между отраслями стираются. Сегодня требуются не только новые компетенции. Причины, по которым потребители выбирают продукт, определяются, возможно, не столько традиционными критериями, сколько возможностями продукта, связанными со сбором данных и аналитикой.
Но зачем потребителям необходимо это ПО? Для того чтобы их смартфон или компьютер мог взаимодействовать с FuelBand, получать от него собранные данные и передавать их Nike. Итак, еще один бизнес Nike – это сбор и хранение данных.
Цель этих действий состоит в том, чтобы Nike могла выполнять аналитику и выявлять шаблоны физической активности и сна пользователей. Таким образом, Nike предоставляет аналитику в сфере услуг. А если компания сумеет соотносить данные, собираемые FuelBand, с вопросами здоровья, то можно будет даже утверждать, что Nike работает и в сфере здравоохранения. Я думаю, теперь вы уловили суть: вследствие применения FuelBand компания стала заниматься множеством различных видов деятельности, не имеющих никакого отношения к производству одежды.
Возможно, самое главное заключается в том, что выбор при покупке FuelBand или аналогичного конкурирующего с ним продукта определяется вовсе не его привлекательным внешним видом или следованием моде. Эти факторы играют роль при выборе традиционных продуктов Nike, но в случае с таким продуктом, как FuelBand, для потребителей гораздо важнее то, какое устройство точнее соберет данные и предоставит лучшую аналитику. Другими словами, данные и аналитика определяют приобретение продукта. Да, сам по себе физический продукт может наличествовать, но на самом деле Nike продает, а потребители покупают данные и аналитику.
Nike превращается в производителя пригодных для ношения технологий и аналитических потребительских товаров. Со временем компания начнет вставлять датчики в обувь, футболки, перчатки, другую свою продукцию, и товары будут работать вместе, чтобы формировать расширенный набор аналитики как для потребителей, так и для Nike.
Это важный и глубинный сдвиг. Мы имеем дело с физическим продуктом, который покупается не ради присущих ему свойств собственно физического продукта. Признавая это, Nike разворачивает свой бизнес лицом к новому поколению продуктов. Чтобы добиться с ними успеха, компании пришлось нанимать веб-разработчиков и дизайнеров высокотехнологичной электроники. А вдобавок к ним – профессиональных аналитиков для разработки отчетности и аналитики, а также ИТ-специалистов для создания систем хранения данных, Такие продукты, как FuelBand, требуют широкого спектра навыков, отличных от тех, которые необходимы для производства традиционной спортивной одежды.
В этом примере я сосредоточился на персональных устройствах для проверки физической формы, однако аналогичная концепция применяется и в других отраслях. Автомобили, самолеты, тракторы, ветряные турбины и грузовики снабжаются встроенными датчиками. Потребители начинают все шире использовать данные, собираемые сенсорными системами, в самых различных целях. Например, при выборе модели автомобиля, если разница между предложениями невелика, то решающее значение может иметь поставляемый вместе с машиной пакет аналитических услуг.
Такой сдвиг с собственно физического продукта на предоставляемые им аналитику и данные несет с собой как новые возможности, так и риски. Но в сегодняшнем мире бизнес нельзя вести по старинке. Данные и аналитика скорее всего приведут в бизнесе ко множеству перемен.
Преобразующая сила операционной аналитики
Появление новых данных и аналитики обусловит глубокие преобразования в некоторых отраслях. Особенно там, где в прошлом ни данные, ни аналитика не играли большой роли. Это подтверждает множество примеров, однако я предлагаю сосредоточиться на отрасли, которая уже созрела для перемен, – на образовании.
В настоящее время здесь все еще используется модель, которая сложилась десятки и даже сотни лет назад. Мы берем детей, по воле случая родившихся примерно в одно время, и – независимо от их уровня развития и подготовки (за редким исключением) – сводим вместе в одном классе. Так, все девятилетние дети учатся в третьем классе и проходят одинаковую программу независимо от того, насколько хорошо или плохо они усваивают материал. Вместо того чтобы отходить от этой модели, Соединенные Штаты лишь еще больше ужесточают правила в отношении программы каждого года школьного обучения.