Читать интересную книгу Занимательная электроника - Юрий Ревич

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 100 101 102 103 104 105 106 107 108 ... 152

Теперь о выборе элементов. При указанных частотах скорость нарастания сигнала на выходе верхнего по схеме ОУ, служащего компаратором, должна быть такой, чтобы сигнал изменялся от напряжения насыщения до нуля не более чем в пределах одного импульса счетной частоты, длящегося 1 мкс. То есть скорость нарастания должна быть не меньше 10 В/мкс, иначе мы получим ошибку за счет неточного определения момента окончания интегрирования (то же требование справедливо и для скорости срабатывания ключей). Второе требование к ОУ — для более точного интегрирования желателен достаточно малый входной ток смещения, не более нескольких наноампер. Он рассчитывается исходя из величины максимального тока интегрирования, в данном случае около 250 мкА, деленного на ту же величину в 12 разрядов, т. е. 4096. Входной ток ОУ должен удовлетворять условию «много меньше», чем полученная величина около 60 нА.

Если принять во внимание допустимое напряжение питания (не менее 12 В), то не так уж и много ОУ удовлетворят указанным требованиям. Микросхема ОРА2132 (два ОРА132 в одном корпусе DIP-8) фирмы Texas Instruments представляет собой прецизионный ОУ с высоким быстродействием (полоса 8 МГц, скорость нарастания до 20 В/мкс), очень малым входным током смещения (50 пА) и высоким допустимым напряжением питания до ±18 В. Из классических отечественных ОУ в коридор требований с некоторой натугой влезет 544УД2 или некоторые ОУ серии 574.

Впрочем, номенклатуру пригодных чипов можно значительно расширить, если снизить напряжение питания до ±5 В (при этом допустимый диапазон входного напряжения необязательно снизится, т. к. оно может превышать напряжение питания, просто манипулировать многими питаниями неудобно) и/или уменьшить частоту счета, например, до 100 кГц (частота отсчетов снизится до 12 Гц, а требования к быстродействию ОУ соответственно упадут). Все это иллюстрирует сложности, которые приходится преодолевать разработчикам при проектировании подобных АЦП в интегральном исполнении, и объясняет, почему интегрирующие АЦП обычно работают так медленно — у большинства прецизионных АЦП частота отсчетов не превышает величины несколько десятков или сотен герц.

Сконструированное нами АЦП относится к типу ПНВ — преобразователей напряжение-время. Ранее широко использовались ПНЧ — преобразователи напряжение-частота (в основном на основе микросхемы 555, см. главу 16), однако большинство их реализаций обладает тем же недостатком, что и однократный интегратор, т. е. в них точность зависит от качества компонентов напрямую. Сейчас мы рассмотрим интегрирующий преобразователь, который также использует двойное интегрирование, но на выходе его получается не интервал времени, который еще нужно сосчитать, а число-импульсный код, т. е. сразу число импульсов за определенный промежуток времени, пропорциональное входному напряжению. Это не частота, как можно бы подумать, точнее, не совсем частота.

АЦП такого типа (преобразователи напряжение-код, ПНК) называются еще дельта-сигма-преобразователями или АЦП с уравновешиванием заряда. Они широко распространены в интегральном исполнении, большинство наиболее высокоразрядных АЦП построены именно так. Я не буду рисовать подробную схему с указанием типов компонентов и разводкой выводов, потому что принципы подбора комплектующих сильно зависят от необходимой точности и разрешающей способности (разрядности), а самостоятельно строить такие схемы нет особого резона.

Принципиальная схема работы ПНК показана на рис. 17.7.

Рис. 17.7. Принцип работы АЦП с уравновешиванием заряда

Работает она следующим образом. Как только напряжение на выходе интегратора DA1 становится меньше нуля, компаратор D1 переключается, и тактовые импульсы начинают поступать на вход счетчика и одновременно на ключ, коммутируя источник опорного тока к суммирующей точке интегратора. Входной ток Iвх и опорный Iоп имеют разные знаки и опорный больше по величине, поэтому с каждым тактовым импульсом напряжение на конденсаторе будет уменьшаться, а на выходе интегратора — стремиться к нулю. Как только оно опять сравняется с нулем, компаратор переключится, и тактовые импульсы перестанут поступать на счетчик и на ключ. Заряд, который сообщается интегратору за каждый тактовый импульс, строго одинаков, поэтому количество таких тактовых импульсов в единицу времени N, необходимых для уравновешивания заряда, сообщаемого источником входного напряжения, будет в точности пропорционально входному напряжению. Разумеется, токозадающие резисторы в цепи входного и опорного напряжения вовсе не обязаны быть равны друг другу, но в любом случае число N будет пропорционально входному току и обратно пропорционально опорному, если соблюдается соотношение Iоп >= Iвх. При их равенстве число импульсов N за секунду будет равно тактовой частоте. Манипулируя величиной Uоп и номиналами резисторов, можно получать различный масштаб. Отметьте, что импульсы на входе счетчика, представляющие число N, могут быть неравномерно распределены во времени — этим ПНК отличается от ПНЧ.

Здесь точность преобразования зависит практически только от стабильности Iоп (Uоп) — при условии, конечно, выбора остальных компонентов по быстродействию в соответствии с рекомендациями для АЦП двойного интегрирования. Автор этих строк строил схему подобного ПНК на самых что ни на есть рядовых элементах: ключах 590КН2, ОУ 544УД1 и КМОП 561-й серии, в качестве источника тока использовалась схема по типу рис. 12.5, г на ОУ 140УД20 и стабилитроне КС170. Тем не менее, при тактовой частоте 2048 Гц (т. е. разрешающей способности 11 разрядов при времени измерения 1 с) стабильность схемы составляла не хуже 3 единиц кода (0,15 %) в диапазоне от -18 до +40 градусов! А если тщательно проработать вопрос стабильности и быстродействия элементов, то можно получить нечто вроде МАХ1400 — прецизионного 18-разрядного АЦП с быстродействием 4800 отсчетов в секунду.

Конструируем цифровой термометр

Цифровые термометры конструировать самостоятельно имеет смысл по крайней мере потому, что рынок подобных бытовых устройств достаточно беден. Фирменные приборы для расположения на стенке комнаты или офиса обычно имеют невзрачный дизайн с корпусами белого или «компьютерного» серого цвета и с ЖК-индикаторами, которые из-за их «слепоты» я бы категорически не рекомендовал применять в бытовых приборах, особенно тех, что предназначены для разглядывания издалека. Терпеливый радиолюбитель вполне может сделать конструкцию куда лучше фирменной — удобную, красивую и приспособленную под свои нужды, а «приставить» к такому термометру измерители влажности, давления и еще чего угодно, получив настоящую метеостанцию, — вопрос только денег, и мы еще этим будем заниматься.

Но сначала поговорим об одной из самых популярных микросхем АЦП, специально приспособленной для конструирования таких приборов, как цифровые измерители или мультиметры. Впервые обе ее разновидности выпущены более четверти века назад и до сих пор не потеряли своего значения — большая часть мультиметров, поступающих в продажу, изготовлена на таких микросхемах или их современных аналогах.

АЦП 572ПВ2 и ПВ5

Основой принципиальной схемы нашего термометра будет микросхема 572ПВ2 (ICL7107), которая представляет собой АЦП двойного интегрирования с выходом в параллельном семисегментном коде с расчетом на 3,5 десятичных разряда. Что означает цифра 3,5 — не может же использоваться полразряда? Действительно, при использовании полного выходного диапазона этой микросхемы, который составляет число ±1999, нужно подключать 4 индикатора, однако последний (старший) из них будет использоваться только для индикации цифры 1 и, при необходимости, знака минус. Число 3,5 и означает, что старший разряд используется не полностью (бывают и более заковыристые обозначения, вроде 3 % разряда, но их оставим на совести авторов). Заметим, что разрешающая способность (а при соблюдении некоторых требований — и точность) этого АЦП эквивалентна приблизительно 11 двоичным разрядам, т. е. приведенная погрешность составит 0,05 %, что очень и очень неплохо.

Основная (типовая) схема включения микросхемы 572ПВ2 показана на рис. 17.8. Микросхема имеет два собственных питания: положительное 5 В (от 4,5 до 6 В) и отрицательное, которое может варьироваться в довольно большом диапазоне от -9 до -3,5 В. Это обстоятельство позволяет при необходимости использовать для отрицательного питания не слишком стабильные преобразователи-инверторы, о чем далее.

Рис. 17.8. Типовое включение микросхемы 572ПВ2 (ICL7107) в корпусе DIP-40

1 ... 100 101 102 103 104 105 106 107 108 ... 152
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Занимательная электроника - Юрий Ревич.
Книги, аналогичгные Занимательная электроника - Юрий Ревич

Оставить комментарий