Читать интересную книгу Большая Советская Энциклопедия (ГА) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 99 100 101 102 103 104 105 106 107 ... 176

  Понижение температуры и увеличение магнитного поля приводят к увеличению (Dr/r )^ . П. Л. Капица (1929), используя магнитные поля в несколько сот тысяч э и сравнительно низкие температуры (температура жидкого азота), обнаружил существенное увеличение сопротивления большого числа металлов и показал, что в широком интервале магнитных полей (Dr/r )^ линейно зависит от магнитного поля (закон Капицы).

  В слабых магнитных полях (Dr/r )^ пропорционально H2 . Коэффициент пропорциональности между (Dr/r )^ и H2 положителен, т. е. сопротивление растет с увеличением магнитного поля. Изменение сопротивления в магнитном поле называется чётным Г. я., т. к. (Dr/r)^ не изменяет знак при изменении направления поля Н на обратное.

  Так как сопротивление весьма чувствительно к качеству образца (к количеству примесей и дефектов кристаллической решётки), а также к температуре, то каждое измерение приводит к новой зависимости r от Н . Имеющиеся экспериментальные данные для металлов удобно описывать, выразив (Dr/r )^ в виде функции от Н эф = Hr300 /r, где r300 — сопротивление данного металла при комнатной температуре (Т = 300К), а r — при температуре эксперимента. При этом различные данные, относящиеся к одному металлу, укладываются на одну кривую (правило Колера).

  Основная причина Г. я. —искривление траекторий носителей тока (электронов проводимости и дырок) в магнитном поле (см. Лоренца сила ). Траектория носителей в магнитном поле может существенно отличаться от траектории свободного электрона в магнитном поле — круговой спирали, навитой на магнитную силовую линию. Разнообразие траекторий носителей тока у различных проводников — причина разнообразия Г. я., а зависимость траектории от направления магнитного поля — причина анизотропии Г. я. в монокристаллах. Мерой влияния магнитного поля на траекторию электрона является отношение длины свободного пробега l электрона к радиусу кривизны его траектории в поле Н: rн = cp/eH (р — импульс электрона). По отношению к Г. я. магнитное поле считают слабым, если Н £ Но = el/cp, и сильным, если Н ³ Н0 .

  При комнатных температурах для различных металлов и хорошо проводящих полупроводников H0 ~ 105 —107 э, для плохо проводящих полупроводников Н0 ~108 —109 э. Понижение температуры увеличивает длину пробега l и потому уменьшает значение H0 . Это позволяет, используя низкие температуры и обычные магнитные поля (~104 э), осуществлять условия, соответствующие сильному полю Н >> Н0 .

  Измерение сопротивления монокристаллических образцов металлов в сильных магнитных полях — один из важных методов изучения металлов. Исследуется зависимость сопротивления от величины магнитного поля и его направления относительно кристаллографических осей. Теория Г. я. показала, что зависимость сопротивления от поля Н существенно связана с энергетическим спектром электронов. Резкая анизотропия сопротивления в сильных магнитных полях (у Au, Ag, Cu, Sn и др.) означает существ, анизотропию Ферми поверхности . И, наоборот, небольшая анизотропия сопротивления в магнитном поле означает практическую изотропию поверхности Ферми. При этом, если с ростом магнитного поля для всех направлений r не стремится к насыщению (Bi, As и др.), то электроны и дырки содержатся в проводниках в равных количествах. Стремление сопротивления к насыщению означает, что преобладают либо электроны, либо дырки (тип носителей может быть установлен по знаку постоянной Холла).

  Наряду с поперечными Г. я. наблюдается также небольшое изменение сопротивления металлов в магнитном поле, параллельном току I : (Dr/r )|| , наз. продольным гальваномагнитным эффектом. В сильных магнитных полях обнаруживаются квантовые эффекты, проявляющиеся в немонотонной (осциллирующей) зависимости постоянной Холла и сопротивления от поля Н.

  При изучении Г. я. в тонких плёнках и проволоках имеет место зависимость (Dr/r )^ и (Dr/r )|| от размеров и формы образца (размерные эффекты). С ростом Н при rn £ d (d — наименьший размер образца) эта зависимость исчезает. В ферромагнитных металлах и полупроводниках (ферритах ) Г. я. обладают рядом специфических особенностей, обусловленных существованием самопроизвольной намагниченности в отсутствие магнитного поля. Например, эдс Холла в ферромагнетиках зависит не только от среднего поля Н в образце, но и от намагниченности, сопротивление в слабых полях иногда убывает (см. Ферромагнетизм , Холла эффект ).

  Лит.: Лифшиц И. М., Каганов М. И., Некоторые вопросы электронной теории металлов, «Успехи физических наук», 1965, т. 87, в. 3; 3айман Дж., Принципы теории твердого тела, пер. с англ., М., 1966

  М. И. Каганов.

Гальванометр

Гальвано'метр (от гальвано... и ...метр ), высокочувствительный электроизмерительный прибор, реагирующий на весьма малую силу тока или напряжение. Наиболее часто Г. используют в качестве нуль-индикаторов, т. е. устройств для индикации отсутствия тока или напряжения в электрической цепи. Применяют Г. и для измерений малых силы тока и напряжения, определив предварительно постоянную прибора (цену деления шкалы). Различают Г. постоянного и переменного тока. Первые Г. постоянного тока были созданы в 20-х годах 19 в. и по принципу действия являлись приборами магнитоэлектрической системы (см. Магнитоэлектрический прибор измерительный). Они состояли из магнитной стрелки, подвешенной на тонкой нити и помещенной внутри катушки из проволоки. При отсутствии тока в катушке стрелка устанавливается по магнитному меридиану данного места. Появление тока вызывает отклонение стрелки от первоначального положения. В 19 в. было создано много конструктивных разновидностей Г. с подвижной магнитной стрелкой и они широко применялись при научных исследованиях электромагнитных явлений. Так, например, в 1886 Г. Кольрауш, пользуясь таким Г., определил с высокой точностью электрохимический эквивалент серебра.

  В 1881 французский учёный Ж. А. д'Арсонваль создал Г. с подвижной катушкой, в котором подвижным элементом служил проводник с током, помещенный в поле постоянного магнита. В зависимости от конструкции подвижной части такие Г. подразделяют на Г. рамочные (подвижная часть — рамка с несколькими витками проволоки), петлевые (подвижная часть — петля из одного витка проволоки) и струнные (подвижная часть — провод, натянутый как струна). В качестве примера на рис. 1 показано устройство рамочного Г. В поле постоянного магнита 1 расположена рамка 2, на оси которой укреплена стрелка-указатель 3. Протекающий по виткам рамки ток взаимодействует с полем постоянного магнита и создаёт вращающий момент, вызывающий поворот подвижной части и соответственно перемещение стрелки относительно шкалы. Для повышения чувствительности Г. на подвижной части вместо стрелки указателя укрепляют миниатюрное зеркальце оптического отсчётного устройства. На рис. 2 показан зеркальный Г. с оптическим устройством. Луч света от осветителя 1 падает на зеркальце 3 и, отражаясь от него, попадает на шкалу 4. Шкалу устанавливают на расстоянии 1,5—2 м от Г., поэтому даже весьма малые угловые перемещения зеркальца вызывают заметные отклонения светового пятна на шкале от его нулевого положения. Разновидностью являются Г. со световым отсчётом, у которых осветитель и шкала размещены в одном корпусе с механизмом Г. В этом случае для получения достаточной длины светового луча применяют многократное отражение его от нескольких неподвижных зеркал.

  При прохождении по обмотке Г. кратковременного импульса тока получается баллистический отброс подвижной части из нулевого положения с последующим возвращением к нему после нескольких колебаний. Если длительность импульса значительно меньше периода собственных колебаний подвижной части, то первое наибольшее отклонение указателя пропорционально количеству электричества, перенесённого импульсом. Для измерения количества электричества при сравнительно продолжительных импульсах изготовляют Г. баллистические, у которых момент инерции подвижной части значительно больше, чем у обычных Г. С помощью баллистических Г. можно измерять количество электричества при импульсах продолжительностью до 2 сек.

1 ... 99 100 101 102 103 104 105 106 107 ... 176
На этом сайте Вы можете читать книги онлайн бесплатно русская версия Большая Советская Энциклопедия (ГА) - БСЭ БСЭ.

Оставить комментарий