Шрифт:
Интервал:
Закладка:
Знаем, знаем, что физики встретят эту цифру громовым хохотом. Это у них профессиональный рефлекс такой. Действительно, смешно – если правда, что электронам на ускорителях накручивают энергии, которые исчисляются миллиардами электрон-вольт. Если правда, что, при приближении скорости электрона к скорости света, у него происходит релятивистский рост массы (или энергии, или импульса). «Ну, а как же не происходит-то? – втолковывают нам. – Должон происходить! Ведь накручиваем же! Всё в полном согласии с СТО!» О, это знакомая песенка. Вы, дорогой читатель, обратили внимание – сколько раз специалисты пели про это «полное согласие»? И сколько раз оказывалось, что там не полное согласие, а полная задница? Так откуда же взяться исключению на этот раз? Вот посудите-ка сами!
Сначала – небольшое лирическое вступление. Результаты, получаемые в экспериментальной физике, обычно стараются проверять и перепроверять. Особенно ценны проверки, получаемые различными, независимыми друг от друга способами. Взять хотя бы скорость света – как только её, бедную, не измеряли! Если независимые результаты худо-бедно сходятся, то это говорит об отсутствии грубых ошибок. Напротив, если в некотором вопросе зацикливаться только на одну экспериментальную методику, то гарантий от грубых ошибок нет. А теперь представьте, что в этой любимой методике грубая ошибка имеется. И что есть другие, независимые методики, которые кричат: «Ошибка! Ошибка!» Что в такой ситуации делать дяденькам, которые упорствуют в своих заблуждениях? Да взгляните на ситуацию вокруг релятивистского роста энергии-импульса – и получите ответ совершенно исчерпывающий!
Где там она, эта любимая методика? А вот она: это отклонение быстро движущихся заряженных частиц магнитным полем. Понимаете, когда Эйнштейн свистнул у Лорентца формулу для релятивистского роста массы, других методик ещё и не было. А Кауфман уже увидел: эффект вроде бы есть! Вот Эйнштейн и подсуетился. А эффект вот какой: чем больше скорость частицы, тем более сильное магнитное воздействие требуется приложить, чтобы свернуть частицу с пути прямого. При большом желании, эти результаты можно истолковать так: по мере увеличения скорости частицы, у неё, вишь ты, масса растёт, отчего увеличиваются её инертные свойства – поэтому магнитному полю становится всё труднее на неё действовать. Вот вам и метод измерения энергии быстро движущейся частицы: чем меньше кривизна её траектории в магнитном поле, тем больше её энергия. Вплоть до бесконечности! Так, как предсказывает СТО!
Заметьте: такое толкование возможно, и в самом деле, только при большом желании. Известен универсальный принцип: воздействие на объект стремится к нулю, если скорость объекта приближается к скорости передачи воздействия. Вот классический пример из механики: ветер разгоняет парусник. Когда скорость парусника сравнивается со скоростью ветра, ветер на него совсем не действует. Даже детям понятно: это получается не оттого, что масса парусника становится бесконечной. Аналогичные вещи происходят и при раскрутке ротора асинхронной машины вращающимся магнитным полем, и при взаимодействии сгустков электронов с замедленной электромагнитной волной в лампе бегущей волны. Лишь для методики магнитного отклонения делается исключение: не сомневайтесь, мол, вот там не что иное, как релятивистский рост! Да как же не сомневаться? Где гарантии, что шкала энергий-импульсов, получаемая по вашей любимой методике, не имеет искажений в области больших скоростей? «Ну, как же! – разъясняют нам. – Смотрим мы на розеточки треков частиц. И видим. Треки эти кривые – из-за магнитного поля. Вот треки до соударения, а вот – после. Суммы релятивистских импульсов до соударения и после него – одинаковы. Сохраняется релятивистский импульс! Значит, он и реален! Всё сходится!» Да… тяжёлый случай. Как будто не ясно, что если вы не выходите за рамки методики, дающей иллюзорные завышения энергий-импульсов, то только с иллюзорно завышенными величинами вы и будете ковыряться. И, даже при чудовищных иллюзорных завышениях, всё оно будет неплохо сходиться!
Уж простите, ничего не остаётся, кроме как задать вопрос в лоб. Вы утверждаете, что чудовищные энергии у тех же электронов – это реальность. Можно ли эту энергию выделить, превратить её в другие формы? Удалось ли кому-нибудь хотя бы раз извлечь из одного электрона, при его взаимодействии с веществом, энергию в несколько ГэВ? Или хотя бы в несколько МэВ? Что-то про такое не слышно!
Вот, например, частицы оставляют треки в камере Вильсона или в пузырьковой камере. При формировании этих треков, превращения энергии, по меркам микромира, огромны – но они происходят не за счёт энергии пролетающих частиц. Дело в том, что здесь регистрирующая среда пребывает в неустойчивом состоянии – это переохлаждённый пар или перегретая жидкость. Ничтожных воздействий достаточно, чтобы инициировать переходы среды в устойчивое агрегатное состояние. Потому и получаются, вдоль траектории частицы, центры конденсации или парообразования. Не зазевайся только, успей их сфотографировать – вот тебе и трек. А частица-то на него свою энергию не тратила. «Мышка бежала, хвостиком махнула – яичко упало и разбилось».
Совсем другое дело – измерения ионизационных потерь энергии частицы! В своё время пользовались популярностью замечательные приборчики: пропорциональные счётчики. Влетев в такой счётчик, частица растрачивает свою кинетическую энергию на ионизацию атомов вещества-наполнителя – принципиально до полной своей остановки. Чем больше энергия частицы, тем больше число ионизированных атомов, и тем больше генерируемый приборчиком импульс тока. Что особенно здорово: энергия в несколько электрон-вольт, требуемая для ионизации одного атома, настолько невелика, что, применительно к ней, говорить о релятивистском «завышении» просто смешно. Поэтому к показаниям пропорциональных счётчиков следовало бы относиться с большим доверием: есть веские основания полагать, что они измеряют энергию частицы честно. И вот как выглядят результаты этих честных измерений. В «нерелятивистской области», пока энергия частиц малая, результаты её измерения пропорциональными счётчиками совпадают с результатами её измерения по методике магнитного отклонения. Но в «релятивистской области» выходит неувязочка: энергия, измеряемая по «магнитной» методике, лезет в релятивистскую бесконечность, а энергия, измеряемая пропорциональными счётчиками, выходит на насыщение и дальше не растёт. Причём, не похоже на то, что счётчики «шалят»: существует много их различных типов и конструкций – и все они показывают одно и то же. А именно: никакого релятивистского роста энергии нет.
Как в такой ситуации поступают настоящие релятивисты? Вопроса о том, кому верить – «магнитной» методике или пропорциональным счётчикам – у них даже не возникает. «Магнитная» методика – непогрешима! И все остальные методики нужно по ней калибровать! Вот, например, как судить об энергии гамма-квантов? А вот как: по энергии вторичных электронов, а саму эту энергию измерять по «магнитной» методике! Аналогично определять пороги ядерных реакций, разности ядерных уровней энергии, а также энергии вторичных ядерных частиц! И даже измерения длин волн гамма-излучения с помощью дифракции на кристалле – ни в коем случае без калибровки по «магнитной» методике не оставлять! Чтобы было единство измерений! Говорите, какие-то там пропорциональные счётчики нарушают это стройное единство? Говорите, их показания выходят в релятивистской области на насыщение? Значит, чушь показывают эти счётчики! Значит, в релятивистской области они не работают! Тут, правда, возникает дурацкий вопрос – а что же им мешает работать в релятивистской области? Вот! Над этим вопросом пришлось попыхтеть изрядно. Дурацкий-то он дурацкий, а в больное место попал. Трудно поверить, но вот чем занимались талантливые учёные: сочиняли вспомогательные теории, призванные объяснить увеличение аппаратурных погрешностей у пропорциональных счётчиков при работе в релятивистской области. Тут, конечно, требовались чудеса изобретательности. Ведь до чего подло увеличивались эти аппаратурные погрешности – точно компенсируя релятивистский рост энергии, как будто этого роста и нет вовсе! Поди-ка разбери все эти подлости! Да ещё у счётчиков разных конструкций и подлости разные! Тут одной теорией, пригодной для всех, не обойдёшься! Ну, ничего, ничего. Талантливо грязно выругались, посопели, побрюзжали, а все необходимые теории понаписали. Сразу легче стало.
Думаете, этим всё и закончилось? Ах, если бы!.. Была ведь ещё одна методика измерения тормозных потерь – в фотоэмульсиях. Здесь частица тоже теряет энергию на ионизацию атомов, причём каждый получившийся ион формирует фотографическое зёрнышко. И эти зёрнышки различимы под микроскопом! Значит, число ионизаций, произведённых частицей, можно пересчитать! А затем умножить это число на энергию одной ионизации – вот и получится исходная энергия частицы! Да уж… на словах-то всё просто. А на деле получались такие же подлости, как и в пропорциональных счётчиках. В «нерелятивистской области» число зёрнышек, умноженное на энергию одной ионизации, великолепно соответствовало результатам «магнитной» методики. А в «релятивистской области» число зёрнышек выходило на постоянную величину и дальше не росло. И, опять же, использовались различные составы фотоэмульсий. И, опять же, все они говорили одно и то же. А именно: если подходить к вопросу незамутнённым методом пристального вглядывания, то никакого релятивистского роста энергии не видать.
- Теория относительности — мистификация ХХ века - Владимир Секерин - Физика
- Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует - Ли Смолин - Физика
- Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - Брайан Грин - Физика
- Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует - Ли Смолин - Физика
- Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Грин Брайан - Физика